Hedy: A Gradual Language for Programming Education

Felienne Hermans
ffj.hermans@liacs.leidenuniv.nl
Leiden Institute of Advanced Computer Science, Leiden University
Leiden, the Netherlands

ABSTRACT

One of the aspects of programming that learners often struggle with
is the syntax of programming languages: remembering the right
commands to use and combining those into a working program.
Prior research demonstrated that students submit source code with
syntax errors in 73% of cases and even the best students do so in
50% of cases. An analysis of 37 million compilations by 250.000 stu-
dents found that the most common error was a syntax error, which
occurred in almost 800.000 compilations. It was also found that Java
and Perl are not easier to understand than a programming language
with randomly generated keywords, stressing the difficulties that
novices face in understanding syntax.

This paper presents Hedy: a new way of teaching the syntax
of a programming language to novices, inspired by educational
methods by which punctuation is taught to children. Hedy starts
as a simple programming language without any syntactic elements
such as brackets, colons or indentation. The rules slowly and grad-
ually change until the novices are programming in Python. Hedy is
evaluated on 9714 programs.

CCS CONCEPTS

+ Applied computing — Education; « Software and its en-
gineering — Parsers; General programming languages.

KEYWORDS
programming education, gradual programming, Hedy, Python

ACM Reference Format:

Felienne Hermans. 2020. Hedy: A Gradual Language for Programming
Education. In 2020 International Computing Education Research Conference
(ICER °20), August 10-12, 2020, Virtual Event, New Zealand. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3372782.3406262

1 INTRODUCTION

With computer technology being a tool of rapidly growing impor-
tance in nearly all aspects of life, the world also needs programmers.
In fact, the world needs ever more programmers; the number of
software developer jobs is expected to grow with 17% by 2024,
much faster than the average rate among other professions [1]. In
response to this rising demand, countries such as the Netherlands
are now implementing programming and computer science (CS)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER °20, August 10-12, 2020, Virtual Event, New Zealand

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7092-9/20/08. .. $15.00
https://doi.org/10.1145/3372782.3406262

curricula in high schools [7]. University CS programs around the
world are growing rapidly as well. However, this increase does
not address the shortage of programmers, since CS programs typi-
cally have attrition rates as high as 40% [9], which is higher than
other programs that are traditionally considered as difficult such
as physics. The Dutch bureau of statistics reports that about 60%
of physics students but only 50% of CS students finish their de-
gree in 6 years [62]. It has been hypothesized that, in universities,
this is due to the current instructional techniques that are used [9]
and expectations that are set too high [38], current introductory
programming courses ask too much of novice CS students, while
providing too little guidance.

One of the aspects of programming that learners struggle with is
the syntax of programming languages. The precision that is needed
while programming is often named as a factor which contributes
to the difficulty in learning programming. This requires “a level of
attention to detail that does not come naturally to human beings" [40].
Denny found that weak students submit source code with syntax
errors in 73% of cases and even the best students do so in 50% of
cases [16]. Altadmri and Brown analyzed 37 million compilations
by 250.000 students and found that the most common error to be
a syntax error: mismatched brackets, which occurred in almost
800.000 compilations [3]. Other researchers found that common
programming languages Java and Perl are not easier to understand
than a random language, stressing the difficulties that novices face
in understanding syntax [56]. Interestingly enough, students assess
learning syntax as more problematic than teachers [44], which
might help us understand why little effort is given to the explicit
explanation of syntax in many programming classrooms.

Various approaches have been tried to make learning to program
easier for novices. Three main approaches in previous work can
be distinguished: 1) mini or toy languages specifically aimed at
teaching, such as Scratch [47] or LOGO [42], 2) sub-languages of
full programming languages like MiniJava [48] and 3) incremental
languages which start with a subset of a language and incrementally
add new concepts, such as DrScheme [22].

This paper proposes a new form, a gradual language with an
increasingly complex syntax, based on how punctuation is taught
to novice readers in natural language education. Programming is
often seen as part of STEM (Science, Technology, Engineering &
Mathematics) [50, 64], however, learning a programming language
also shares significant characteristics with learning a natural lan-
guage, since learners also have to learn about both semantics and
syntax. It has been argued that programming education might be
improved by employing instructional strategies common in natural
language teaching [27, 45].

This paper is an implementation of that line of thought, and
seeks inspiration to learn syntax from how students learn to write
their first natural language. When learning a first language, novices

https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262

do not learn syntax, punctuation and capitalization at once. Initially,
they only write letters in lowercase, as shown in Figure 1.

P 1S ggnk v en
m sl n boorie
pim heewve oon V15 devaren
21 'DOPT ndarhu€
PIM baxtde vig
PIMeCtde vis op pirh 940+ nddr ey
PimiS nise Pimdage Sldagn
RIS dang d roomen
Pim 15 @0 N kgbauser
PITN 9% naar de mier

Figure 1: Handwriting of a novice learner (Dutch), using
only lowercase letters in initial writing [30]

Only in later stages, learners will learn to add uppercase, periods,
comma’s and semicolons. It has been argued that this gradual form
of teaching works best at a young age, since beginning writers are
young (around 6-7 years of age), and at that age still operate at the
pre-operational stage [41]. This means they will be so occupied
with writing, that they cannot concentrate yet on, for example,
punctuation and story-lines. Many modern researchers believe that
when novices are learning a new skill they will operate at one of
the lower Piagetian stages, irrespective of their age. This notion has
also gained popularity in Computer Science education [36]. Lister
also argued that the cognitive load of students while programming
might be overloaded by the simultaneous teaching of programming
concepts, syntax and problem solving, and that students behave
similar to younger children learning to write.

This paper presents a new way of teaching the syntax of a pro-
gramming language to novices: with a small and very simple pro-
gramming language of which the syntax rules slowly and gradually
change until the novices are programming Python, similarly to how
students acquire their first written language. Hedy supports dif-
ferent levels, each with new commands and increasingly complex
syntax. For example, printing at Level 1 is done by simply using
the command print followed by text:

print Hello!
print Welcome to your first programming lesson

In Level 2, variables are added as a concept, but quotes still are
not needed:

print name is Jason
print Welcome to your first programming lesson name

In Level 3, quotation marks are introduced in the print state-
ment, and the code to print is then:

print name is Jason
print 'Welcome to this programming lesson' name

Hedy is evaluated on 9714 programs, showing a relative low
number of errors, and giving rise to several improvements of the
language and its error messages.

The contributions of this paper are:

e The design of a new, gradual, programming language for
novices (Section 3)

e A corresponding open source implementation (Section 4)

A detailed examination of the implications of Hedy, and of

gradual programming languages in general (Section 5)

e An exploratory evaluation on almost Hedy 10.000 programs
(Section 6)

2 RELATED WORK

2.1 Learning Punctuation

Research has shown that learning correct punctuation is a long
process [21] and that, while learning, novices often temporarily
forget previously acquired knowledge [53]. Extensive practice can
speed up learning to use punctuation in a correct way [35]. Research
also shows repetition is important in learning language, for example:
a word needs to be read seven times before it is stored in long-term
memory [61].

2.2 Programming Languages for Novices

In previous research three different approaches in programming
languages for novices can be distinguished [12]:

Mini-languages Mini-languages are languages that are small
and especially designed to support learning to program. A
well-known example of a mini-language is Papert’s LOGO [42].
More modern examples of mini-languages are Scratch [47]
and Karel the Robot [10]. Mini-languages are said to “pro-
vide a solid foundation for learning a general purpose lan-
guage" [13], but learning a mini-language can also be a goal
in itself, leading to the acquisition of algorithmic thinking.

Sub-languages In the sub-language approach, programming
is taught to novices using only a set of commands from a
bigger programming language, which typically is one that
is used in practice such as Pascal or later, Java. Initially the
idea of sub-languages was not to have them successively
grow, but to simply select a subset to teach. Examples are
Helium, a subset of Haskell for educational purposes [26],
and MiniJava [48] and Professor] [25] for Java.

Incremental approach The incremental approach first teaches
a small subset of a programming language where each sub-
set introduces new programming language constructs. This
approach was first implemented for PL/1 by Holt [29] et al.
and later also applied to Fortran [6] and Pascal [5]. Some
other versions of incremental teaching used subsets that
were explicitly not arranged as a hierarchy where “higher
level” contained the “lower level” but instead divided the lan-
guage into overlapping languages like chapters in a textbook
would. ones [58]. More recently, DrScheme used a similar
approach for Scheme [22].

2.3 Educational Effects of Different Languages

Researchers have attempted to understand the effect of different
languages on study success of learners. Wainer and Xavier for
example compared a course in Python with one in C and found
students using Python were less likely to fail and scored higher on
the exam [63] This gives credibility to our hypothesis that a simpler

language with less syntactic elements—Python in this case-has
benefits in teaching. One might wonder though, whether teaching
a simpler language interferes with more complicated language
learner later, but research does not suggest this. Manilla et al. studied
eight students who learned programming in Python before moving
on to Java, and found no disadvantages from having learned to
program in a simpler language when later learning a more complex
language [39]. Enbody also performed two studies showing that
Python can also serve as good preparation for subsequent C++
courses [19, 20].

2.4 Spiral Approach

As early as 1977, Shneidermann described what he called a ‘spiral
approach’ to learning programming, which shares a great number
of design goals with Hedy. Shneidermann argues that, to accommo-
date the cognitive limits of learners, learning to program should
start with a small amount of syntax (and accompanying simple se-
mantics). He writes: “A programming course might begin by teaching
the semantics and syntax of free-format input and output statements,
then progress to the simplest forms of the assignment statement and
arithmetic expressions. At each step the new material should contain
syntactic and semantic elements, should be a minimal addition to pre-
vious knowledge, should be related to previous knowledge, should be
immediately shown in relevant, meaningful examples and should be
utilized in the student’s next assignment. This is the spiral approach’.
Shneidermann also recommends extensive practice of simpler forms
before advancing to new forms and argues this could help students
who would otherwise be overwhelmed [51]. While this idea seems
very promising, and is rooted in cognitive science, it was not fol-
lowed up; the paper currently only has 15 citations. This might
also be due to the fact that the paper did not have a corresponding
implementation in a language or lesson series. Recently, papers
have also described languages that extend over time, for example
Cazzola and Olivares [14] describe a language which gradually
builds up to JavaScript, in which students were provided with dif-
ferent JavaScript variants, where each variant focused on another
language feature, e.g., loops, recursion, exception handling, object
orientation. Vega et al. describe their Java-based system Cupi2, in
which students solve increasingly more complicated problems, with
partly generated programs [60]. DrScheme also consists of a set
of languages, each a larger subset of Scheme [22]. Like Shneider-
mann argues, these languages start small, add one concept at a time,
and limit the language to concepts which have been explained and
practiced. However, while the above papers share philosophical
principles with Hedy, as far as we know a language of which the
syntax gradually changes, rather than being extended, has not been
described or implemented before.

2.5 Extensible and Growable Languages

Languages that change over time have also been proposed in do-
mains outside of programming education. Fortress for example [2]
is a growable language that is designed to “grow over time to ac-
commodate the changing needs of its users". Lusth et al. proposed
using reflection and overloading to grow and shrink languages, for
example to comply with specific coding style guidelines [37].

3 HEDY DESIGN GOALS & PRINCIPLES

3.1 Design Goals

The overarching goal of Hedy is to gradually add syntactic complex-
ity to a Python-like language, until novices have mastered Python
itself. The target audience of the language are novices from the
age of about 11, who are expected to exert a limited amount of
cognitive load on reading natural language, and are old enough to
be ready to reason at the formal operational stage. Hedy follows
these design principles:

(1) Concepts are offered at least three times in different
forms Research from writing education [21, 53] has shown
that it is needed to offer concepts in different forms over a
long period of time. Furthermore it has been shown that a
word needs to be read 7 times before it is stored in long-term
memory [61].

(2) The initial offering of a concept is the simplest form
possible Previous research has shown that syntax can be
confusing for novices [16, 56]. We therefore want to keep
the initial syntax free of as many keywords and operators
as possible to lower cognitive load.

(3) Only one aspect of a concept changes at a time In his
paper on the Spiral approach, Shneidermann argued for min-
imal changes [51]. Recent work sheds a light on why small
changes are effective, Tshukudu and Cutts show that learn-
ers are able to transfer knowledge from one programming
language to another if the syntactic differences are not too
big [59].
Adding syntactic elements like brackets and colons
is deferred to the latest moment possible Previous re-
search in the computer science education domain has shown
that operators such as == and : can be especially hard for
novices, and prevent their effective vocalization of code [28],
which is known to be an aid in remembering [57]. Research
from natural language acquisition shows that parenthesis
and the colon are among the latest element of punctuation
that learners typically learn [23]. Given the choice between
colons and parenthesis and other elements like indentation,
the latter are introduced first.

(5) Learning new forms is interleaved between concepts

as much as possible We know that spaced repetition [24]

is a good way of memorizing; and that it takes time to learn

punctuation. With that in mind, we want to students as much
time as possible to work with concepts before the syntax
changes.

At every level it is possible to create simple but mean-

ingful programs It is important for all learners to engage

in meaningful activities [11]. Our experience in teaching
high-school students (and even university CS students) is
that learning syntax is not always seen as a useful activity.

Students experience a large discrepancy between the com-

puter being smart, for example by being able to multiply

1,910 and 5,671 within seconds, while simultaneously not

being able to add a missing colon independently. We antici-

pate that when the initial syntax is simple, allowing novices
to create a fun and meaningful program, they will later have
more motivation to learn the details of the syntax.

—~
N
=

—
=)
~

3.2 Levels

In its current form, Hedy consists of 13 different levels. Table 1
shows an overview of commands available at different levels.

Table 1: Overview of commands available at different levels.
‘x’ indicates a command is available, ‘new’ means it is avail-
able in a new form compared to the previous level

> o&{;\ X
X o >
Command Q’,;’x0 S 6&0 &960&%\60 S z\%e @Qz
Level

1 X X X

2 X new X X

3 new X X X

4 X X X X X X

5 X X X X X X X

6 X X X X X X X

7 X X X X New new new

3.2.1 Level 1: Printing and input. At the first level, students can
print text with no other syntactic elements than the keyword print
followed by arbitrary text. Level 1 code and the corresponding
output can be seen in Figure 2. Furthermore students can ask for
input of the user using the keyword ask. Here we decided to use
the keyword ask rather than input because it is more aligned with
what the role of the keyword is in the code than with what it does.
Input of a user can be repeated with echo, so very simple programs
can be created in which a user is asked for a name or a favorite
animal, fulfilling Design Goal 6.

3.2.2 Level 2: Assignment using ‘is’: numbers and lists. Atthe second
level, variables are added to the syntax. Defining a variable is done
with the word is rather than the equals symbol fulfilling Design
Goal 3 and Design Goal 4. We also add the option to create lists and
retrieve elements, including random elements from lists with at.
Adding lists and especially adding the option to select a random item
from a list allows for the creation of more interesting programs such
as a guessing game, a story with random elements or a customized
dice.

3.2.3 Level 3: Quotation marks and types. In Level 3, the first syntac-
tic element is introduced: the use of quotation marks to distinguish
between variables and ‘plain text’. In teaching novices we have seen
that this distinction can be confusing for a long time, so offering
it early might help to draw attention to the fact that computers
need information about the types of variables. This level is thus
an interesting combination of explaining syntax and explaining
programming concepts, which underlines their interdependency.

3.24 Level 4: Selection with if and else flat. In Level 4, selection
with the if statement is introduced, but the syntax is ‘flat’, i.e. placed
on one line, resembling natural language more:

if name is Bert print 'Yellow'

Else statements are also included, and are also placed on one
line, using the keyword else:

if name is Bert print 'Yellow' else print 'Orange'

3.25 Level 5: Repetition with repeat x times. In working with non-
English native Python novices, we have previously found that the
keyword for to be a confusing word for repetition, especially be-
cause it sounds like the word ‘four’ [28]. For our first simplest form,
according to Design Goal 2, we opt to use repeat x times, as com-
mon in other educational programming languages also, including
Quorum [55] and TigerJython [31].

In its initial form code is placed on one line, similar to the if
statement in Level 4:

repeat 5 times print 'Hello World'

3.2.6 Level 6: Calculations. In Level 6, students learn to calculate
with variables, so addition, multiplication, subtraction and division
are introduced. While this might seem like a simple step, the use of
* for multiplication, rather than X, and the use of a period rather
than a comma as decimal separator for non-US students is a steep
learning curve and we thus believe it should be treated as a separate
learning goal, following Design Goal 3.

3.2.7 Level 7: Code blocks. After Level 6, there is a clear need to
‘move on’, as the body of a loop (and also that of an if) can only
consist of one line, which limits the possibilities of programs that
users can create. We assume this limitation will be a motivating
factor for learners, rather than ‘having to learn’ the block structure
of Python, they are motivated by the prospect of building larger
and more interesting programs (Design Goal 6). The syntax of the
loop remains otherwise unchanged as per Design Goal 3, so the
new form is:

repeat 5 times

print 'Hello'
print 'World'

3.2.8 Level 8: For syntax. Once blocks are sufficiently automatized,
learners will see a more Python-like form of the for loop, namely:
for i in range @ to 5. This allows for access to the loop variable
i and that in turn enables the creation of more interesting programs,
such as counting to 10. As per Design Goal 3, the change is made
small, and to do so (following Design Goal 4), brackets and colons
are deferred to a later level, but indentation which was learned in
Level 7 remains.

3.2.9 Level 9: Learning the colon. To make the step to full Python,
learners will need to use the colon to denote the beginning of a block,
in both loops and conditionals. Because blocks are already known,
we can teach learners to use a colon before every indentation, and
have them practice that extensively.

3.2.10 Level 10: Repetition and selection nested. To allow for enough
interleaving of concepts (Design Goal 5), we defer the introduction
of round brackets and focus on more conceptual additions: the nest-
ing of blocks. We know indentation is a hard concept for students
to learn, so this warrants its own level (Design Goal 3).

3.2.11 Level 11: Adding round brackets. Level 11 adds round brack-
ets in print, range and input. As per Design Goal 4, these are
added as late as possible.

3.2.12 Level 12: Adding rectangular brackets. In level 12, learners
encounter different types of brackets for the first time, because it

adds rectangular brackets for list access, which up to now was done
with the keyword at, following Design Goal 2.

3.2.13 Level 13: is becomes = and ==. In the final level Hedy be-
comes a subset of Python by replacing the word is in assignment
and equality checks by = and ==.

3.3 User Interface

The current implementation of Hedy is shown in Figure 2. The
interface includes an editor in which to enter code on the left, and
a field for output on the right. Each level also includes buttons to
try out commands introduced in each level. For each level videos
with explanation and written assignments are also accessible from
within the user interface.

Levell Code Explanation

In Level 1 you can use these commands

Print something with print. Ask something with ask.

Repeat something using echo.

print hello world! hello world!

) [===]

Figure 2: Level 1 of the Hedy user interface in English

4 HEDY IMPLEMENTATION

Currently Hedy is implemented in Python, using the Lark parser.
Code is parsed and subsequently transpiled into Python, for example
by adding brackets where needed. The resulting Python code is
then executed. Hedy can be downloaded and ran in an IDE, but
also has a web version in which Hedy can be simply typed in the
browser, as common in modern web-based IDE’s for teaching such
as repl.it and Trinket. This enables running Hedy without installing
anything, and will thus likely increase adoption in schools where
teachers often have limited or no posiibilities to install software. It
also means Hedy can be used on mobile phones and tables. Hedy’s
code base is open source, available on GitHub!.

4.1 Grammar and parsing

Listing 4.1 shows the grammar used in Level 1. As shown in the
listing, the grammars of Hedy parse more than the language allows.
For example, the grammar of Level 1 not only parses print, ask
and echo, but any word that is placed before text separated with a
space. As such, the Level 1 parser also accepts show hello world.
This allows us to give specialized error messages like “show is not a
command in Hedy. Did you mean print?".

start: program

program: command (newline + command)=*

command: "print " text -> print

| "ask " text -> ask
| "echo " text -> echo

1A link will be shared in the final version of the paper

| textwithoutspaces " " text -> invalid
PUNCTUATION : "0 | "2" | " "
newline: "\n"
text: (LETTER | DIGIT | PUNCTUATION | WS_INLINE)+
textwithoutspaces: (LETTER | DIGIT)+ -> text
%import common.LETTER
%import common.DIGIT
%import common.WS_INLINE

Listing 1: Grammar of Level 1 in Lark

5 IMPLICATIONS OF GRADUAL
PROGRAMMING LANGUAGES

Hedy is a programming language which gradually adds more syntax,
and is designed to lower the syntax barrier by giving novices more
time to learn syntax. Here we hypothesize on a number of ways in
which gradual programming languages can contribute to learning.

5.1 Reach Higher Levels of Abstraction Early

Programming is taught for various reasons, including teaching
programming to train computational thinking [66]. We envision
that because the syntax barrier is deferred to later in a novice’s
programming career, a learner can learn about higher order skills
such as how multiple statements work together (Macro-Structure
or Relations in Schulte’s Block Model [49]).

5.2 Differentiation Between Learners

Programming education knows large differences between students
within a classroom, which can lead to frustration both in quicker
and slower students [4]. From Level 7 on, Hedy allows learners
within a classroom to create the same programs with a varying
level of ‘real’ Python syntax. One can imagine that all students work
on the same assignment, where some use Hedy Level 7 while others
have already learned full Python, while still producing similar end-
results.

5.3 Run Code at Previous Levels

1t is known that learners, when learning a new concept, often ‘fall
back’ and forget about other concepts they previously acquired [36].
Because of the leveled structure of Hedy, it is possible to attempt to
compile failing code with a previous level of Hedy, to detect exactly
where the student made a mistake and give a concrete suggestion
based on that knowledge, i.e. “Remember, you need to indent a
loop".

5.4 Localized Keywords

Many programming languages for young novices use keywords
which can be localized to various natural languages, including
Scratch [47]. Unsurprisingly, research has shown that learners learn
programming more easily in their own mother tongue [15]. Since
Hedy code, especially at the lower levels, has a grammar simpler
than full Python, this opens up the possibility of using keywords
in different languages, and changing them to English and Python
versions gradually too.

5.5 Gradual Error Messages

It is known that error messages are a source of frustration for
novice programmers. Especially in Python error messages do not
always aid in finding the error [17, 32]. One reason for this is that
the learner is exposed to the full spectrum of error messages at
once, and that a program as simple as print(’Hello’) can lead
to various error messages if the closing quote or round bracket
are omitted. An omitted closing quote leads to the error message:
SyntaxError: EOL while scanning string literal which is unlikely to
help a novice programmer locate their mistake. The design phi-
losophy of Hedy can improve error messages in two ways. Firstly,
the simple grammar of early levels will also allow for more precise
error messages since the range of options is more limited. This is
illustrated by the grammar of Level 1 in Listing 1. The three first
options of the command rule are allowed Hedy commands, when
none of those match, the fourth option will, allowing for the gen-
eration of a detailed error message. For example this Hedy code:
prnt Hello World generates the error message: prnt is not
a Hedy level 1 command, did you mean print? which is
arguably more helpful than NameError: name ‘prnt’ is not
defined which Python would produce. This code could even be
fixed for the novice programmer (see further Section 5.6).

In addition to more precise error messages, Hedy could also
gradually increase the complexity of error messages, for example
by initially using ‘End of Line’ rather than EOL complemented
with an explanation that Python gets confused because it does not
know where the code ends. This could later be replaced by EOL,
so learners are prepared to make the switch to the full Python
language including Python error messages.

5.6 Program Repair

The fact that Hedy code at low levels is simpler than a full program-
ming language also creates an opportunity to apply program repair
techniques. While program repair techniques have improved signif-
icantly over the past years [33, 34], the general problem of repairing
buggy programs remains hard. Recently, some initial experiments
were attempted to use program repair techniques to generate hints
for novices, however only limited success was achieved: about 30%
of programs could be repaired and novices did not benefit from the
generated hints [67]. Hedy might ease this. For example, at Level
1, Hedy consists of three keywords only: print, ask and echo, de-
tecting typos in keywords and subsequently suggesting the correct
keyword is almost trivial.

6 EVALUATION

In order to evaluate the Hedy programming language and the cor-
responding web-based user interface, we ran an exploratory user
study on Level 1 to Level 7. Hedy was released to the public on
Monday March 16th 2020, after which data was collected for 3
weeks, until April 6th 2020. Announcements about Hedy were
shared through Twitter, through a press release of the university
where the first author is employed, and were subsequently picked
up by some Dutch news sites. Over the course of the evaluation,
11133 programs were gathered. Out of these, 791 programs were
demo programs provided within the user interface, the code snip-
pets which are generated for the Hedy user when pressing one

of the ‘Try this’ buttons shown in Figure 2. The fact that 7.1% of
programs consist of demo programs shows that these buttons are
used, and as such that the interface is probably helpful in getting
started. These demo programs were however written by us, and
are therefore discarded from the evaluation which follows. We also
discard start programs, which are the programs present in the user
interface when a new level is opened by a Hedy programmer. In
total, 628 (5.6%) of these start programs were excluded from fur-
ther analysis. As such, the evaluation that follows will be based on
9714 submitted Hedy programs.

6.1 Dataset Overview

6.1.1 Level Usage. Not all Hedy levels were used equally over the
course of our experiment. We assume this is mainly caused by the
fact that not all levels were released at the same time, so we have
been collecting data for the earlier levels for a longer period of
time. Level 1 was released on March 19th, Levels 2 to 4 on March
23rd and 5 to 7 on March 31st. Figure 3 shows an overview of the
number of programs created per level.

Programs at different Hedy levels

Number of programs

Figure 3: Histogram of Hedy programs per level

6.1.2 Program Lengths. Most Hedy programs that were created
are small, with an average of 2.9 lines of code and a median of 2.0.
However larger programs were also present in the dataset, with
the longest one being 100. Figure 4 shows an overview of program
lengths. As expected, programs increase in length for higher levels.
Since more complicated command are included at higher levels, this
allows for more interesting programs. Figure 5 shows the average
program length per level.

6.2 Commands Used

As explained in Section 3, different levels of Hedy support different
commands. An overview of these commands is presented in Table
1. Figure 6 then presents the commands that programmers used in
the evaluation in correct programs. From this figure we can learn a
number of things about Hedy. Firstly, the specially designed echo
command seems to be popular in Level 1. This strengthens our belief

Lines of code for Hedy programs up to 15

6000

5000

4000 4

3000 A

Number of programs

2000

1000 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lines of code

Figure 4: Histogram of program lengths

Average length of programs per level

Average program length
w
|

=
[N]
w
S
v
o
-

Figure 5: Overview of average program lengths per level

that giving novice programmers an easy way to interact with the
interface is helpful. In Level 2, assigning to a list is a very popular
language feature, accounting for more than half of the commands
used in Level 2. Here too we present users with a language fea-
ture of which we think it would be out of their reach syntactically:
correctly using rectangular brackets and command and quotation
marks for strings is an error prone operation for novice program-
mers. Our assumption is that early exposure to complex features
will motivate learners later on to learn about the same concepts
with more syntax rules. We do see the usage of assign list drop
starkly in Level 3, which might mean that novices focus mainly
on new features and only practice them in moderation in later levels.

Figure 6 also points to potential issues. For example, it indicates
that the use of ask decreases from Level 1 to Level 2. This might
be caused by the fact that the syntax changes from Level 1 to Level
2, and students might be confused or discouraged by the new form.

Number of Hedy commands used at different levels

print
4000 7 . ask
3500 echo
o EEN repeat
£ 3000 - i
S . else
g 2500 1 assign
S 2000 ——— assign list
2
£ 1500
E
1000 1 —_—
500 = .
B —
0 T T T T T T T
1 2 3 4 5 6 7
Level

Figure 6: Use of commands over different levels

To study that in more detail, we analyze erroneous programs and
examined which commands were used in the wrong way. This
analysis needed to be done manually, since erroneous programs do
not parse, and as such we could not extract the commands for the
generated parse tree. The result of that analysis can be found in
Figure 7. This figure indeed confirms that the new form of ask and
the removal of echo are sources of errors. Although it is important
to note that in absolute numbers, the amount of errors is quite low,
for example there are less than 100 errors involving ask in Level 2,
in which over 4000 programs were created in total.

Number of Hedy commands used in programs causing an error

500 1] print
. ask
echo
w400 1 m repeat
E] [—
E |l —ise
o 300 .
2 assign
5] assign list
E 200 4 BN other
£
3 —
100 | N
-
0 T T T T T T T
1 2 3 4 5 6 7
Level

Figure 7: Commands causing errors over different levels

7 ERROR CLASSIFICATION

The main goal of Hedy is to reduce the initial complexity of program-
ming languages sometimes called the syntax barrier for novices, and
as such, we aim at an error rate that is lower than that of traditional
textual languages. From our first exploratory study, this seems to be
the case. Out of the 9714 programs we evaluated, 1363(12.2%%) re-
sulted in an error, either a syntax error or a conceptual mistake.
While this obviously is a broad strokes comparison, this is lower

than percentages reported in traditional textual languages. For ex-
ample, Denny et al. revealed that weak students submit source code
with syntax errors in 73% of cases and even the best students do
so in 50% of cases [16]. As a first rough measure of success, the
error rate of Hedy is quite a lot lower than these numbers in textual
languages. Of course this might not only be due to simpler syntax
bit also due to a lower number of programming concepts present
in levels 1 to 7.

To gain a deeper understanding of the underlying issues which
caused the errors, we manually inspected all 1363 programs contain-
ing an error. The following subsections describe the 11 categories
into which we coded the answers.

Table 2: Errors classified into 11 different categories

Category # programs % of errors
Incomplete code 253 18.6%
Code ran at the wrong level 251 18.4%
Misspelled or misplaced keyword 233 17.1%
Invalid character 219 16.1%
Use of invalid spaces 171 12.5%
Quotes 111 8.1%
Multiline command 72 5.3%
Python 26 1.9%
Line numbers 13 1.0%
Nested code 10 0.7%
Misconception 4 0.3%
Total 1363 100

7.1 Incomplete code

In many cases (253) novices forgot to use a keyword or an argu-
ment, or other mandatory syntax elements such as commas in a
list. There are a few directions of improvement for the parser and
transpiler possible that would improve the reporting of these is-
sues. For example adapting the grammar to allow for keywords
without arguments, and subsequently presenting an error message
to the user. However even with better error messages, it is likely
that issues with incomplete code will common. Incomplete code
is known to be of the common issues with textual languages: the
most common error found by Altadmri and Brown was a case of
incomplete code too (mismatched brackets [3], so this seems to be
an inherently hard concept to learn for novices.

7.2 Code Ran at Wrong Level

As expected, the most common mistake, occurring in 251 programs
(18.4% of programs with an error) is the mistake where learners
use commands from a wrong level. We expected this to happen
when learners run code they learned at a previous level at a higher
one. This was the case in 207 cases. Somewhat surprising to us, the
reverse also occurred, although not very often: only in 46 cases stu-
dents used keywords or commands not yet introduced. For example
a student aimed to run this code at Level 4: repeat 100 times
print ’.’ while repeat is only introduced at Level 5.

An obvious improvement to Hedy, also discussed in Section
5.3, would be to try to run the code at different levels, and give
feedback to the learner that they are using either a command no

longer in use, or a command not yet unlocked. This is however more
complicated than simply calling the transpiler again at a higher
level, since in many cases students did not simply write perfect code
from a lower level, but mixed code from different levels. A more
elaborate technique is needed to slice the code and treat different
lines differently.

7.3 Misspelled or Misplaced Keywords

With 233 errors, misspelled keywords are a relatively common error.
Examples are writing keyword in uppercase or omitting one letter.
We also saw cases of programs using keywords in Dutch or Spanish
rather than in English, or changing keywords to fit natural language
better, for example using are instead of is:
choices are m, n, b, v, c
print choices at random
Most likely this problem is caused by the fact that because a list
is assigned and the word ‘are’ is the most fitting form of the verb.
While misspelling a keyword is a simple mistake to make, gener-
ating meaningful error messages is not a trivial endeavor. In Levels
1 and 2 the error message is quite meaningful, for example the code
prin Hello’ resultsin the error message: prin is not a keyword
in Level 1, did you mean print?, which is possible because
of the small grammar of these levels. At higher level though, errors
gets increasingly harder to pinpoint, as is common in many textual
programming languages.

7.4 Issues with Quotation Marks

Out of all erroneous programs, 111 are related to issues with quotes.
In the current version of Hedy, only singular quotes are supported,
but some students tried double quoted instead of attempted to
naively print string literals containing a single quotation mark,
suchas: print ’what’s your name?’.Forgotten closing quotation
marks also occurred, as well as the omission of quotation marks
altogether, although that could also be seen as running code at
a lower level, since Level 1 does not require quotation marks in
printing.

An especially interesting case occurred in two Level 2 programs
in the same session, which reversed the meaning of quotation marks
entirely: print we do not know that my name is ’name’.This
might be a general misconception about the meaning of quotation
marks, but might also be some residue of Level 1 understanding,
where the addition of the fact that we can print variables and text
together is interpreted in the exact opposite direction: variables
need quotation marks, but text does not (as in Level 1).

A subcategory of quotation issues is the use of quotation marks
in commands other than print. In an attempt to keep the language
simple, and to make small changes as per Design Goal 3, quotation
marks are firstly only added to print. The ask keyword and as-
signment can still be used without quotation marks in Level 3. So
these are both valid Level 3 programs:
naam is Hank
ask What is your name?

In 35 programs however, students assumed that quotation marks
would also be needed in other commands involving string liter-
als. While that assumption is sensible, the limited amount of 35
mistakes with this (versus 2818 successful programs involving ask,

print or assignment in Level 3 and up) strengthen our belief that
this was the right design choice.

7.5 Issues involving Spaces

145 errors were related to the incorrect use of spaces, for example
starting a line of code with a space or forgetting a space between
arguments, like: print ’"hey ’name

Some of these issues might be addressed with a stringer parser—the
example above could be parsed with relative ease—but for others
the question of how to address them is more related to pedagogy.
For example, starting a line with spaces currently is not allowed,
even in lower levels, because that might cause issues later when
indentation is introduced. Error messages could be improved for
these kinds of errors. These programs now cause parse errors since
the grammar does not support starting with a space, hence the error
message is: No terminal defined for ’ ’ at line 1 col 1,
which is not friendly. The parser could be improved to generate
more meaningful errors here.

7.6 Issues involving Other Invalid Characters

Apart from quotation marks, other characters can also cause is-
sues, which they did in 219 programs. For example, some students
attempted to print HTML code, maybe to make the output of the
code look nicer:

print <p> cheese <p/>, or used comma’s in print statements:
print He is thinking, Pete must be here. Other invalid
characters included letters with accents, or errors due to encoding
issues. Improving the parser and the reporting of such errors is
certainly an improvement to be made, however these issues are not
directly related to the design philosophy of Hedy.

7.7 Multiline Commands

72 errors were due to the fact that Hedy programmers assumed
that commands could span multiple lines, for example:

k is ask choose a number

if k is 1 print 'yes'

else print 'wrong'

This, however, could also be a case of negative transfer from other
programming languages in which if and else are placed on differ-
ent lines.

7.8 Python Commands

Almost 2% of errors (26 programs) seem to be caused by students
with some experience in programming in Python, or other program-
ming languages, using commands that they are used to in those
languages. For example a program submitted at Level 3 read:
print ’Hello world’, ’ d’.

This program uses the comma as a separator between arguments,
and likely stems from exposure to other languages. Due to the simi-
larity Hedy shares with Python, some transfer (negative or positive)
is expected. It is certainly an interesting endeavour to try to under-
stand this transfer better, for example by running a study in which
we measure the Python knowledge and programming knowledge of
Hedy users. It is an open question how to communicate the overlap
in programming languages to users; should we stress the fact that

Hedy is like Python, or should we present it as its own language
and downplay the overlap?

7.9 Line Numbers

To help learners read the example programs provided in the accom-
panying lesson materials, we included line numbers in the example
programs. A small number of programs accidentally included these
line numbers, causing errors. We observed in subsequent programs
within the same session that these error were relatively easy to
solve for learners. This phenomenon, although not frequent, does
raise the question of whether using line numbers in example code
is helpful, or whether we should make it clearer that they are not
part of the code snippets themselves.

7.10 Nested Code

Levels 1 to 6 do not support the nesting of more than 2 commands;
you can include one if in a repeat or the other way around, but
not more, because there are no code blocks yet. However, some
learners (0.7%) attempted to nest multiple if commands. In a way,
this is a special case of running code at a level too low, but not
exactly, since these programs tried to nest the if commands on one
line. While this category is very small, it does point to interesting
issues in the Hedy design, since there will always be a small part
of the learners that will try to stretch the limits of a level. How to
handle that is an interesting open question.

7.11 Misconceptions

Four of the errors seem to be not related to syntax errors, but are
due to misconceptions about how computers operate. A common
misconception for example is that computers are smart and can
process natural language [43].

Firstly, one programmer kindly asked the computer to select a
number at Level 2 rather than using the random syntax:
lis1,2,3,4,5,6,7,8,9,10
ask choose a number above @ and below 10

Hedy shares with other programming languages the issue that
learners do not see the difference between a machine that can
fully comprehend natural language and a machine that simply
executes a programming language, even though Hedy syntax is
simpler. It would be valuable to compare Hedy to a more traditional
programming language to investigate whether Hedy induces this
misconception to a lesser extent, because it supports less commands
initially and thus looks less like a programming language, or to a
higher extent, because it is more natural language like.

The second program showing a misconception is this one:

print 'the animal is a' animal
animal is cat

The misconception here seems to be the assumption that the
order of a program does not matter, and potentially also that as-
signment to a variable creates a connection which can be resolved
later. These too are both common misconceptions [18, 46, 52, 54]

8 DISCUSSION

This paper describes Hedy: a new programming language for novices
that gradually adds and modifies syntax to ease the learning of

Python. This section describes some open issues not yet addressed
in this paper.

8.1 Trade-offs

One of the overarching aspects of discussion around Hedy is the
trade-off between starting simple and then later learning a new syn-
tactic form, which takes mental effort, and learning the right syntax
from the start. While research shows that learning a simpler lan-
guage does not interfere with more complicated ones later-on [39],
we are not sure of the effects within a single language. One could
argue that different levels of Hedy are different languages, but most
likely in the mind of the user they will be seen as one. In computer
science the vision seems to have been to learn the right thing from
the start which presents cognitive overhead of remembering sym-
bols and also might give the impression to learners that they need
to learn arbitrary things. Learning to write on the other hand has
mainly taken the opposite stance of allowing many different forms
and adding small steps. Our goal is to explore a form of middle
ground between these two forms of teaching.

8.2 Starting List Indices at 1

One of such trade-offs, addressed in the previous subsection, is
where to start counting. In the current implementation, we abide
by the convention adopted by Python and most other programming
language’s of starting at 0. We can very much envision a future
version of Hedy in which counting initially starts at 1 to align with
what students know from math, and only changing this to 0 in a
later level of the language, since we have found that learning to
count from 0 takes considerable effort and practice, and does not
necessarily add value for learners.

8.3 Multiplication and Division

A second trade-off is the choice of operators for basic calculation.
For Level 4, in which calculations are first introduced, we consid-
ered using X initially for multiplication and : for division, rather
than * and \. That would be more in line with Design Goal 2 be-
cause it would align with what learners know in early high-school.
We decided against that for practical reasons, because it would
either require students to type the X character with a special key
combination which is not something used in the remainder of the
lessons, or require us to parse the letter x as multiplication which
presented parsing issues. Also, most students will be familiar with
a calculations on the computer, for example in a spreadsheet, where
the * is also commonly used for multiplication and \ for division.

8.4 Access to the Type System

In Level 3, where types are introduced, we considered also adding
a simple syntactic form of type() to allow novices to interact with
the type system and ask Hedy what type a variable is. Ultimately we
decided against that, because we want to train novices to remember
and/or understand the types of variables themselves. However
adding this could be an interesting experimental feature.

8.5 Remaining at Level 7

When learners have reached Level 7, a quite reasonable subset of
Python is covered which includes variables, loops and conditions.

One could imagine learners simply using this level of Hedy without
advancing to full Python, using it as a mini-language. One could also
imagine remaining at this level while teaching a range of computer
science concepts such as sorting and filtering and search algorithms
before adding more syntax.

8.6 Comments

The current version of Hedy does not include characters to be used
to add comments. We made that decision to keep the language
simple. However, while examining the error data set, we saw learn-
ers removing lines to understand what lines were erroneous. That
means we might reconsider the inclusion of a comments character
for future versions.

8.7 Access to Generated Python

Currently, we do not give learners in Hedy access to the Python
code that their program generates, but there is no technical reason
not to do so. Some block-based languages, including PencilCode [8]
allow a user to translate their blocks into JavaScript, inspect and
even edit the generated code. Research on switching between the
block and text modality of Pencil showed that students often ‘fell
back’ to using blocks when trying new constructs [65], but we
are unaware of studies investigating the educational benefits of
inspecting or adapting generated code.

9 CONCLUDING REMARKS

This paper introduces Hedy: a programming language for educa-
tional purposes of which the syntax grows with the level of the
students. Hedy is designed based on 6 concrete design goals rooted
in prior research. The paper presents an exploratory evaluation
on 9714 programs in Level 1 to 7 which indicates a relatively low
error rate of 12.2%. While confusion between code of different levels
is the second most common source of errors which accounts for
about 20% of errors, these mistakes only occurred in 251 of pro-
grams (2.6% of programs), which increases our confidence that the
benefits of syntax that starts small outweighs potential confusion it
causes in later levels. The evaluation furthermore presents a num-
ber of actionable improvements for Hedy, including more improved
feedback for incomplete programs and program that misspell key-
words, and better analysis of programs that combine commands
from different levels.

The current research gives rise to a number of avenues for future
research. Firstly of course—when times will allow for this again—we
plan to perform observation studies on students programming Hedy,
for example using a think aloud protocol. In that setting we can
also measure the prior understanding of students of programming
in general and Python in particular to gain a deeper understanding
of interaction effects. Secondly, Levels 8 and up could be released
and tested, improved with the lessons we learned from the current
study. It would be interesting to see whether the error rate remains
low when complexity of programs increases.

Additional studies, whether done online or in classrooms, would
also allow for us to explore many of the trade-offs outlined in
Section 8, such as starting counting at 1 or giving students access
to the generated Python code.

REFERENCES

(1]

[2

—

[3

8

=

[9

=

[10]

—
—

[12]

[13

[14]

[15]

[16]

[17]

[18]

=
o

[20

[21

[22

[23]

2019. Software Developers : Occupational Outlook. https://www.bls.gov/ooh/
computer-and-information-technology/software-developers.htm#tab-6

Eric E. Allen, Ryan Culpepper, Jon Rafkind, and Sukyoung Ryu. 2008. Growing a
Syntax.

Amjad Altadmri and Neil Brown. 2015. 37 Million Compilations: Investigating
Novice Programming Mistakes in Large-Scale Student Data. SIGCSE 2015 -
Proceedings of the 46th ACM Technical Symposium on Computer Science Education
(2015), 522-527. https://doi.org/10.1145/2676723.2677258

Sherry Andrews, Cara McFeggan, and Cynthia Patterson. 1998. Problems Students
Encounter during Math Instruction in Mixed-Ability Classrooms. (1998).

J. W. Atwood and E. Regener. 1981. Teaching Subsets of Pascal. SIGCSE Bull. 13,
1 (Feb. 1981), 96-103. https://doi.org/10.1145/953049.800969

T. Balman. 1981. Computer assisted teaching of FORTRAN. Computers & Educa-
tion 5, 2 (Jan. 1981), 111-123. https://doi.org/10.1016/0360-1315(81)90020-8
Erik Barendsen, Nataga Grgurina, and Jos Tolboom. 2016. A New Informatics
Curriculum for Secondary Education in The Netherlands. In 9th International Con-
ference on Informatics in Schools: Situation, Evolution, and Perspectives. Springer
International Publishing, 105-117. https://doi.org/10.1007/978-3-319-46747-4_9
David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens. 2015.
Pencil code: block code for a text world. In Proceedings of the 14th International
Conference on Interaction Design and Children (IDC ’15). Association for Com-
puting Machinery, Boston, Massachusetts, 445-448. https://doi.org/10.1145/
2771839.2771875

Theresa Beaubouef and John Mason. 2005. Why the High Attrition Rate for
Computer Science Students: Some Thoughts and Observations. SIGCSE Bull. 37,
2 (June 2005), 103-106. https://doi.org/10.1145/1083431.1083474

Byron Weber Becker. 2001. Teaching CS1 with karel the robot in Java. In SIGCSE
’01. https://doi.org/10.1145/364447.364536

John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated Cognition
and the Culture of Learning. Educational Researcher 18, 1 (Jan. 1989), 32-42.
https://doi.org/10.3102/0013189X018001032

P. Brusilovsky, , and Others. 1994. Teaching Programming to Novices: A Review
of Approaches and Tools. (1994). https://eric.ed.gov/?id=ED388228

Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko,
and Philip Miller. 1997. Mini-languages: A way to learn programming principles.
Education and Information Technologies 2 (March 1997), 65-83. https://doi.org/
10.1023/A:1018636507883

Walter Cazzola and Diego Mathias Olivares. 2016. Gradually Learning Pro-
gramming Supported by a Growable Programming Language. IEEE Trans-
actions on Emerging Topics in Computing 4, 3 (July 2016), 404-415. https:
//doi.org/10.1109/TETC.2015.2446192

Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernandez, and Ben-
jamin Mako Hill. 2016. Remixing As a Pathway to Computational Thinking.
In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing (CSCW ’16). ACM, New York, NY, USA, 1438-1449.
https://doi.org/10.1145/2818048.2819984 event-place: San Francisco, California,
USA.

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the syntax barrier for novices. ACM, 208-212. https://doi.org/10.
1145/1999747.1999807

Rachel D’souza, Mahima Bhayana, Marzieh Ahmadzadeh, and Brian Harrington.
2019. A Mixed-Methods Study of Novice Programmer Interaction with Python
Error Messages. In Proceedings of the Western Canadian Conference on Computing
Education (WCCCE °19). ACM, New York, NY, USA, 15:1-15:2. https://doi.org/
10.1145/3314994.3325090 event-place: Calgary, AB, Canada.

Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2 (Jan. 1986), 57-73.

Richard J. Enbody and William F. Punch. 2010. Performance of Python CS1
Students in Mid-Level Non-Python CS Courses. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education (SIGCSE ’10). Association
for Computing Machinery, New York, NY, USA, 520-523. https://doi.org/10.
1145/1734263.1734437 event-place: Milwaukee, Wisconsin, USA.

Richard J. Enbody, William F. Punch, and Mark McCullen. 2009. Python CS1 as
Preparation for C++ CS2. In Proceedings of the 40th ACM Technical Symposium on
Computer Science Education (SIGCSE ’09). Association for Computing Machinery,
New York, NY, USA, 116-120. https://doi.org/10.1145/1508865.1508907 event-
place: Chattanooga, TN, USA.

Michel FAYOL and Patrick LEMAIRE. 1989. Une étude expérimentale du
fonctionnement distinctif de la virgule dans des phrases: perspective géné-
tique. Etudes de Linguistique Appliquée; Paris 73 (Jan. 1989), 71-80. https:
//search.proquest.com/docview/1307660874/citation/AD75E7B1D3194174PQ/1
Matthias Felleisen, Robert Findler, Matthew Flatt, and Shriram Krishnamurthi.
2004. The TeachScheme! Project: Computing and Programming for Every Student.
Computer Science Education 14 (2004), 55-77. https://doi.org/10.1076/csed.14.1.
55.23499

Emilia Ferreiro and Clotilde Pontecorvo. 1999. Managing the written text: the
beginning of punctuation in children’s writing. Learning and Instruction 9, 6 (Dec.

[24

[25

&
&

[27

[28

[33

(34

[37

[38

N
furg

[42

[43]

[44

[45

[46

1999), 543-564. https://doi.org/10.1016/S0959-4752(99)00006-7

Susan T. Fiske and Sean H. K. Kang. 2016. Spaced Repetition Promotes Efficient
and Effective Learning: Policy Implications for Instruction. Policy Insights from
the Behavioral and Brain Sciences 3, 1 (March 2016), 12-19. https://doi.org/10.
1177/2372732215624708

Kathryn E. Gray and Matthew Flatt. 2003. Professor]: A Gradual Introduction to
Java through Language Levels. In Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA °03). Association for Computing Machinery, New York, NY, USA, 170-
177. https://doi.org/10.1145/949344.949394 event-place: Anaheim, CA, USA.
Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium, for
Learning Haskell. In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell
(Haskell "03). Association for Computing Machinery, New York, NY, USA, 62-71.
https://doi.org/10.1145/871895.871902 event-place: Uppsala, Sweden.

Felienne Hermans and Marlies Aldewereld. 2017. Programming is writing is
programming. In Companion to the first International Conference on the Art, Science
and Engineering of Programming. 1-8.

Felienne Hermans, Alaaeddin Swidan, and Efthimia Aivaloglou. 2018. Code
phonology: an exploration into the vocalization of code. In Proceedings of the
26th Conference on Program Comprehension. 308-311.

Richard C. Holt, David B. Wortman, David T. Barnard, and James R. Cordy. 1977.
SP/k: a system for teaching computer programming. Commun. ACM 20 (1977),
301-309. https://doi.org/10.1145/359581.359586

Henk Huizinga. 2004. Taal & Didactiek - Stellem (wolters-noordhoff ed.).

Tobias Kohn. 2017. Teaching Python Programming to Novices: Addressing Miscon-
ceptions and Creating a Development Environment. PhD Thesis. ETH Zurich.
Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Error
Messages in Python. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 524-530.
https://doi.org/10.1145/3287324.3287381 event-place: Minneapolis, MN, USA.
Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
3-13. https://doi.org/10.1109/ICSE.2012.6227211 ISSN: 0270-5257.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (Jan. 2012), 54-72. https://doi.org/10.1109/TSE.
2011.104

J. Paul Leonard. 1930. The Use of Practice Exercises in Teaching Capitalization
and Punctuation. The Journal of Educational Research 21, 3 (March 1930), 186-190.
https://doi.org/10.1080/00220671.1930.10880030

Raymond Lister. 2016. Toward a Developmental Epistemology of Computer
Programming. In Proceedings of the 11th Workshop in Primary and Secondary
Computing Education (WiPSCE ’16). Association for Computing Machinery, New
York, NY, USA, 5-16. https://doi.org/10.1145/2978249.2978251 event-place:
Miinster, Germany.

J. C. Lusth, N. A. Kraft, and J. Tacey. 2009. Language subsetting via reflection
and overloading. In 2009 39th IEEE Frontiers in Education Conference. 1-6. https:
//doi.org/10.1109/FIE.2009.5350866

Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’16). ACM, New York, NY, USA, 284-289. https://doi.org/10.1145/2899415.
2899432 event-place: Arequipa, Peru.

Linda Mannila, Mia Peltoméki, and Tapio Salakoski. 2006. What about a simple
language? Analyzing the difficulties in learning to program. Computer Science
Education 16, 3 (2006), 211-227. https://doi.org/10.1080/08993400600912384

I. T. Chan Mow. 2008. Issues and Difficulties in Teaching Novice Computer
Programming. In Innovative Techniques in Instruction Technology, E-learning,
E-assessment, and Education.

Ulrich Miiller, Jeremy I. M. Carpendale, and Leslie Smith. 2009. The Cam-
bridge Companion to Piaget. Cambridge University Press. Google-Books-ID:
IGggAWAAQBAJ.

Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

Roy D. Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Pro-
gramming. Journal of Educational Computing Research 2, 1 (Feb. 1986), 25-36.
https://doi.org/10.2190/689T- 1R2A-X4W4-29]2

Martinha Piteira and Carlos Costa. 2013. Learning Computer Programming: Study
of Difficulties in Learning Programming. In Proceedings of the 2013 International
Conference on Information Systems and Design of Communication (ISDOC ’13).
Association for Computing Machinery, New York, NY, USA, 75-80. https://doi.
org/10.1145/2503859.2503871 event-place: Lisboa, Portugal.

Scott R. Portnoff. 2018. The introductory computer programming course is
first and foremost a language course. ACM Inroads 9, 2 (April 2018), 34-52.
https://doi.org/10.1145/3152433

Ralph T. Putnam, D. Sleeman, Juliet A. Baxter, and Laiani K. Kuspa. 1986. A
Summary of Misconceptions of High School Basic Programmers. Journal of

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/953049.800969
https://doi.org/10.1016/0360-1315(81)90020-8
https://doi.org/10.1007/978-3-319-46747-4_9
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1145/364447.364536
https://doi.org/10.3102/0013189X018001032
https://eric.ed.gov/?id=ED388228
https://doi.org/10.1023/A:1018636507883
https://doi.org/10.1023/A:1018636507883
https://doi.org/10.1109/TETC.2015.2446192
https://doi.org/10.1109/TETC.2015.2446192
https://doi.org/10.1145/2818048.2819984
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/3314994.3325090
https://doi.org/10.1145/3314994.3325090
https://doi.org/10.1145/1734263.1734437
https://doi.org/10.1145/1734263.1734437
https://doi.org/10.1145/1508865.1508907
https://search.proquest.com/docview/1307660874/citation/AD75E7B1D3194174PQ/1
https://search.proquest.com/docview/1307660874/citation/AD75E7B1D3194174PQ/1
https://doi.org/10.1076/csed.14.1.55.23499
https://doi.org/10.1076/csed.14.1.55.23499
https://doi.org/10.1016/S0959-4752(99)00006-7
https://doi.org/10.1177/2372732215624708
https://doi.org/10.1177/2372732215624708
https://doi.org/10.1145/949344.949394
https://doi.org/10.1145/871895.871902
https://doi.org/10.1145/359581.359586
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1080/00220671.1930.10880030
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1109/FIE.2009.5350866
https://doi.org/10.1109/FIE.2009.5350866
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1080/08993400600912384
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1145/3152433

[47]

[48]

[49]

[50]

[51]

(52]

[53]

Educational Computing Research 2, 4 (Nov. 1986), 459-472. https://doi.org/10.
2190/FGN9-DJ2F-86V8-3FAU

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (Nov. 2009), 60-67. https://doi.org/10.1145/1592761.1592779

Eric Roberts. 2001. An Overview of MiniJava. In Proceedings of the Thirty-
Second SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’01). Association for Computing Machinery, New York, NY, USA, 1-5. https:
//doi.org/10.1145/364447.364525 event-place: Charlotte, North Carolina, USA.
Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension As a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (ICER ’08).
ACM, New York, NY, USA, 149-160. https://doi.org/10.1145/1404520.1404535
event-place: Sydney, Australia.

Pratim Sengupta, John S. Kinnebrew, Satabdi Basu, Gautam Biswas, and Douglas
Clark. 2013. Integrating computational thinking with K-12 science education
using agent-based computation: A theoretical framework. Education and Infor-
mation Technologies 18, 2 (June 2013), 351-380. https://doi.org/10.1007/s10639-
012-9240-x

Ben Shneiderman. 1977. Teaching programming: A spiral approach to syntax
and semantics. Computers & Education 1, 4 (Jan. 1977), 193-197. https://doi.org/
10.1016/0360-1315(77)90008-2

Simon. 2011. Assignment and sequence: why some students can’t recognise
a simple swap. In Proceedings of the 11th Koli Calling International Conference
on Computing Education Research (Koli Calling '11). Association for Computing
Machinery, Koli, Finland, 10-15. https://doi.org/10.1145/2094131.2094134

Jean Simon. 1973. La Langue écrite de I’enfant. Presses universitaires de France.
Google-Books-ID: gJRLAAAAYAA].

[54] Juha Sorva. 2008. The same but different students’ understandings of primi-

[55]

tive and object variables | Proceedings of the 8th International Conference on
Computing Education Research. In in Proceedings of the 8th Koli Calling Interna-
tional Conference on Computing Education. 5-15. https://dl.acm.org/doi/10.1145/
1595356.1595360

Andreas Stefik and Richard Ladner. 2017. The Quorum Programming Language
(Abstract Only). In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE °17). ACM, New York, NY, USA, 641-641.
https://doi.org/10.1145/3017680.3022377 event-place: Seattle, Washington, USA.
Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4 (Nov. 2013), 19:1—
19:40. https://doi.org/10.1145/2534973

[57

[58

[59

[61

[62

[63

[64

[65

[66

[67

]

Alaaeddin Swidan and Felienne Hermans. 2019. The Effect of Reading Code Aloud
on Comprehension: An Empirical Study with School Students. In Proceedings of
the ACM Conference on Global Computing Education. 178-184.

Ivan Tomek, Tomasz Muldner, and Saleem Khan. 1985. PMS—A program to
make learning Pascal easier. Computers & Education 9, 4 (1985), 205-211. https:
//doi.org/10.1016/0360-1315(85)90009-0

Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Programming
Languages: Exploratory Study of Relative Novices. In Proceedings of the 2020
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE °20). Association for Computing Machinery, Trondheim, Norway, 307-313.
https://doi.org/10.1145/3341525.3387406

Carlos Vega, Camilo Jiménez, and Jorge Villalobos. 2013. A scalable and incre-
mental project-based learning approach for CS1/CS2 courses. Education and In-
formation Technologies 18, 2 (June 2013), 309-329. https://doi.org/10.1007/s10639-
012-9242-8

Marianne Verhallen and Simon Verhallen. 1994. Woorden leren, woorden onderwi-
jzen. CPS.

Centraal Bureau voor de Statistiek Nederland. [n.d.]. StatLine - WO voltijd;
rendement en uitval, 1995 - 2005. https://opendata.cbs.nl/statline/#/CBS/nl/
dataset/71063ned/table?fromstatweb

WainerJacques and XavierEduardo C. 2018. A Controlled Experiment on Python
vs C for an Introductory Programming Course. ACM Transactions on Computing
Education (TOCE) (Aug. 2018). https://dl.acm.org/doi/abs/10.1145/3152894
David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2015. Defining Computational Thinking for Mathe-
matics and Science Classrooms. Journal of Science Education and Technology 25
(Oct. 2015). https://doi.org/10.1007/s10956-015-9581-5

David Weintrop and Nathan Holbert. 2017. From Blocks to Text and Back:
Programming Patterns in a Dual-Modality Environment. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). Association for Computing Machinery, Seattle, Washington, USA, 633-638.
https://doi.org/10.1145/3017680.3017707

Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (March
2006), 33-35. https://doi.org/10.1145/1118178.1118215

Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A Feasibility Study of Using Automated Program Repair for

Introductory Prosrammin Assignments. In Proceedir%s gf the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New

York, NY, USA, 740-751. https://doi.org/10.1145/3106237.3106262 event-place:
Paderborn, Germany.

https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/364447.364525
https://doi.org/10.1145/364447.364525
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1016/0360-1315(77)90008-2
https://doi.org/10.1016/0360-1315(77)90008-2
https://doi.org/10.1145/2094131.2094134
https://dl.acm.org/doi/10.1145/1595356.1595360
https://dl.acm.org/doi/10.1145/1595356.1595360
https://doi.org/10.1145/3017680.3022377
https://doi.org/10.1145/2534973
https://doi.org/10.1016/0360-1315(85)90009-0
https://doi.org/10.1016/0360-1315(85)90009-0
https://doi.org/10.1145/3341525.3387406
https://doi.org/10.1007/s10639-012-9242-8
https://doi.org/10.1007/s10639-012-9242-8
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/71063ned/table?fromstatweb
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/71063ned/table?fromstatweb
https://dl.acm.org/doi/abs/10.1145/3152894
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/3017680.3017707
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3106237.3106262

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning Punctuation
	2.2 Programming Languages for Novices
	2.3 Educational Effects of Different Languages
	2.4 Spiral Approach
	2.5 Extensible and Growable Languages

	3 Hedy Design Goals & Principles
	3.1 Design Goals
	3.2 Levels
	3.3 User Interface

	4 Hedy Implementation
	4.1 Grammar and parsing

	5 Implications of Gradual Programming Languages
	5.1 Reach Higher Levels of Abstraction Early
	5.2 Differentiation Between Learners
	5.3 Run Code at Previous Levels
	5.4 Localized Keywords
	5.5 Gradual Error Messages
	5.6 Program Repair

	6 Evaluation
	6.1 Dataset Overview
	6.2 Commands Used

	7 Error Classification
	7.1 Incomplete code
	7.2 Code Ran at Wrong Level
	7.3 Misspelled or Misplaced Keywords
	7.4 Issues with Quotation Marks
	7.5 Issues involving Spaces
	7.6 Issues involving Other Invalid Characters
	7.7 Multiline Commands
	7.8 Python Commands
	7.9 Line Numbers
	7.10 Nested Code
	7.11 Misconceptions

	8 Discussion
	8.1 Trade-offs
	8.2 Starting List Indices at 1
	8.3 Multiplication and Division
	8.4 Access to the Type System
	8.5 Remaining at Level 7
	8.6 Comments
	8.7 Access to Generated Python

	9 Concluding Remarks
	References

