
Gradual Programming in Hedy: A First User Study
Marleen Gilsing, Felienne Hermans

Leiden Institute of Advanced Computer Science (LIACS)
Leiden, the Netherlands

{m.gilsing, f.f.j.hermans}@liacs.leidenuniv.nl

Abstract—Recently the ‘gradual programming’ approach was
introduced, which proposes to lower the syntax barrier by
starting with a very simple language, and gradually adding
both concepts and refining syntax. Hedy is the first language
to implement a gradual approach, and this paper presents the
first user study on Hedy with 39 children between age 11 and
age 14 who followed online lessons for six weeks. Based on lesson
observations and a written survey filled out by the participants,
we aim to understand the impact of using a gradual language.
Our findings show that children appreciate the gradual nature
of Hedy, find Hedy easy to learn and especially appreciate the
power to control the difficulty of Hedy themselves. They also
like and frequently use built-in education features like example
code snippets. Challenges of a gradual approach are the fact
that commands sometimes change or overlap, and remembering
commands and specific syntax remain a challenge. According to
the participants, improvements could be made by making Hedy
less sensitive to syntax errors, by improving error messages and
by localizing keywords to the native language of children.

I. INTRODUCTION

Computer science programs suffer from high dropout rates,
as high as 40% [1], which is higher than other programs that
are traditionally considered as difficult such as physics. The
Dutch bureau of statistics reports that about 60% of physics
students but only 50% of CS students finish their degree in 6
years [2].

It has been hypothesized that the high dropout rate is due
to the current instructional techniques that are used [1] and
expectations that are set too high [3]. Current introductory
programming courses might ask too much of novice CS
students, while providing too little guidance.

One of the aspects of programming that learners struggle
with is the syntax of programming languages. For example,
Mow states that the precision that is needed while program-
ming requires “a level of attention to detail that does not come
naturally to human beings” [4].

To specifically address issues with syntax when learning to
program, we have recently coined the idea of a gradual pro-
gramming language, a language that teaches syntax in steps,
rather than at once [5]. As is common in both mathematics and
natural language teaching, learners using a gradual language
initially learn incomplete and partly incorrect models, which
are refined step by step.

The programming language Hedy is an implementation of
the idea of gradual programming. Hedy is an open-source

programming language that runs in the browser and is avail-
able for free. In previous work, we have manually examined
almost 10.000 Hedy programs to gain an understanding of how
novices learn with Hedy [5].

In this paper we examine Hedy in two classes in the
Netherlands. The lessons were recorded, and participants filled
out an open text survey after the 12 lessons. Participants’
answers and videos were coded using thematic analysis [6] in
order to gain insights into the participant’s experiences with
Hedy and to answer our three research questions:

1) What are benefits of a gradual programming approach?
2) What are challenges of a gradual programming ap-

proach?
3) How can gradual programming approaches such as Hedy

be improved?

Our study firstly shows that novices appreciate the fact that
Hedy works in a gradual way and is easy to learn. They
also like the fact that they have control over the difficulty
of Hedy and that built-in explanations are available. There
are some aspects of programming that Hedy helps with, but
Hedy does not remove obstacles entirely; participants in our
study still struggle with remembering the right commands and
producing correct syntax. Improvements might lie in a less
sensitive language that allows different syntax combinations,
better error messages and the localization of keywords.

II. BACKGROUND

A. Issues with learning syntax

Learning syntax is a well-known issue in learning to pro-
gram. Denny et al. for example found that weak students
submit source code with syntax errors in 73% of cases and
even the best students do so in 50% of cases [7]. Altadmri and
Brown analyzed 37 million compilations by 250.000 students
and found that the most common error is a syntax error: mis-
matched brackets, which occurred in almost 800.000 compila-
tions [8]. Other researchers found that common programming
languages Java and Perl are not easier to understand than a
random language, stressing the difficulties that novices face
in understanding syntax [9]. Interestingly enough, students
assess learning syntax as more problematic than teachers [10],
which might shed some light on why little effort is given
to the explicit explanation of syntax in many programming
classrooms.978-1-6654-4592-4/21/$31.00 ©2021 IEEE

B. Gradual learning in natural languages

When learning a first language, novices do not learn syntax,
punctuation and capitalization at once. Initially, they only write
letters in lowercase. Only in later stages, learners will learn to
add uppercase, periods, commas and semicolons. This gradual
form of teaching works well because young children are so
occupied with writing letters, that they cannot concentrate
yet on other aspects of writing, like punctuation and story-
lines [11]. This means that the children operate at a low
Piagetian stage, where they cannot oversee larger problems
and can only focus on small steps.

Many modern researchers believe that when novices are
learning a new skill they will operate at a low Piagetian stages,
irrespective of their age [12], [13]. This notion has also gained
popularity in Computer Science education; Lister argues that
the cognitive load of students while programming might be too
high when simultaneous learning of programming concepts,
syntax and problem solving [14]. This might cause novice
programmers to behave similarly to younger children learning
to write.

Since learning a programming language also shares signifi-
cant characteristics with learning a natural language—learners
in both fields have to learn about both semantics and syntax—
it has been argued that programming education might be
improved by employing instructional strategies common in
natural language teaching [15], [16].

C. Related approaches for teaching novices

Various approaches have been tried to make learning to
program easier for novices. Previous work has typically clas-
sified educational programming languages into three different
categories: 1) mini or toy languages specifically aimed at
teaching, such as Scratch [17] or LOGO [18], 2) sub-languages
of full programming languages like MiniJava [19] and 3)
incremental languages which start with a subset of a language
and incrementally add new concepts, such as DrScheme [20].

Of these three approaches, incremental languages are most
similar to Hedy. The biggest difference between Hedy and
incremental languages however is the fact that in Hedy, syntax
is also gradual. That means that syntax changes with the levels
and becomes more powerful and more complex, e.g. printing
at level 1 is done with print hello world while at level
3 quotation marks become mandatory, so print 'hello
world' will need to be used.

III. HEDY

Hedy is the first implementation of the idea of gradual pro-
gramming. Currently Hedy is implemented in Python, using
the Lark parser.1 Code is parsed and subsequently transpiled
into Python, for example by adding brackets where needed.
The resulting Python code is then executed. Hedy can be
downloaded and run locally, but also has a web version in
which code can be simply typed in the browser, as common
in modern web-based IDEs for teaching such as repl.it and

1https://github.com/lark-parser/lark

Trinket. Hedy’s code base is open source and available on
GitHub.2

A. User Interface

The current implementation of Hedy is shown in Figure 1.
The interface includes an editor in which to enter code on the
left, and a field for output on the right. Each level also includes
buttons to try out commands introduced in each level. For each
level, videos with explanation and written assignments are also
accessible from within the user interface.

Fig. 1. Level 1 of the Hedy user interface in English

B. Educational features

In addition to the gradual approach, Hedy has features that
go beyond gradual programming, but also aim at making
learning easier. These features are not necessarily part of the
gradual programming language paradigm, but are enabled by
a gradual language.

1) A palette of available commands: Block-based lan-
guages like Scratch, Snap! and App Inventor support a feature
called the palette which is an overview of all possible blocks,
which can be dragged into the programming field [21], [22],
[23]. The palette has been frequently names by students as
“as a feature that made it easy to use” [24]. While not a
block-based language, Hedy also aims to make its possibilities
discoverable by users inside of the interface. This saves the
users the cognitive effort of looking up commands. We know
from prior work that looking up information in a separate place
increases cognitive load [25].

The Hedy user interface thus contains an overview of the
commands available in a level, integrated into the editor,
as shown in Figure 1. Each of the commands has a ‘Try
this’ button, which will place a code snippet containing that
command in the editor. The demo code is not executed
automatically; the user can still adapt it before running the
code.

The palette is a feature that is commonly associated with
block-based languages, but in principle, textual languages like

2https:www.github.com/felienne/Hedy

Fig. 2. Languages the participants had experience with

Python of JavaScript could also offer a palette to their users
with possible code snippets. However, this is complicated by
the vast number of options that would be possible. What
language features would be shown, and in what exact form?
Because the Hedy language is initially small, creating a palette
is more straight-forward.

2) Built-in explanations: In addition to the palette of po-
tential code snippets, Hedy also contains built-in videos and
exercises for each level, which the user can open and close
within the user interface. Again, an integrated tutorial is not
a feature that is necessarily part of the gradual language
paradigm, yet is enabled by the small size of each level, which
leads to brief explanations in a clear order.

IV. RESEARCH SETUP

The goal of the paper is to understand the benefits and
challenges of the gradual programming language approach,
and explore how it can be further improved. To that end, 39
seventh-graders followed 12 hours of Hedy lessons covering
the first 6 levels of Hedy. After these lessons, the participants
filled out a written survey on their experiences.

A. Participants

In total, 39 children participated in our study, all seventh
graders, from two different classes in one school in the
Netherlands.

1) Prior experience: From the 39 children in our study, 36
had prior experience with programming. Figure 2 shows an
overview of the programming language the participants were
familiar with before the study. Most children (29 out of 36
with experience, or 80%) had experience with Scratch, hence
no experience with textual languages.

The children acquired their previous experience at various
different sources, as shown in Figure 3. Note that the total
in this graph is more than 39, since some children acquired
programming experience in, e.g. elementary school and at
home and are thus represented in Figure 3 twice.

2) Age: Out of the 39 participants, 38 disclosed their age
and gender. The average age of these 38 participants is 12.8,
and the age distribution can be seen in Figure 4.

Fig. 3. Places where the participants gained programming experience

Fig. 4. Ages of participants in the study

3) Gender: The 38 students that disclosed gender were 22
boys and 16 girls, as shown in Figure 5.

B. Lessons

Participants all followed 12 online Hedy lessons during 6
consecutive weeks, each lesson of one hour. All lessons were
conducted online and given by a Hedy guest teacher who is

Fig. 5. Gender of students in the study

trained and employed as a teacher, but is not a regular teacher
at the school. The teacher was not previously acquainted with
the children in the study.

Each week of lessons has a similar setup, in which the
students followed instruction in the first lesson of the week. In
the instruction, the guest teacher explained the basic concepts
of a level, and gave students an assignment to work on.
After this instruction part of the lesson, lasting about 15
minutes, the students would be allowed to work on Hedy
and the assignment independently. If students ran into issues,
they could ask questions with voice or using the chat, and
share their screen where needed. In the second lesson of the
week, children were allowed to continue working on their
assignments and could again ask questions where needed.

Videos of the lessons were recorded, including the screens
of the teacher when they were teaching, and the screens of
students when they were screen sharing, but without the video
of the learners, for privacy reasons.

C. Survey

After the 12 lessons were completed, students were asked
to fill out a written open text survey, consisting of these
questions:

1) Q1 The greatest thing I created with Hedy was...
2) Q2 What I liked most about Hedy was...
3) Q3 The hardest thing about Hedy was...
4) Q4 If I could change one thing about Hedy, it would

be...
5) Q5 The thing I like most about programming is...
In addition to these questions, demographic information

(gender and age) was collected and the information about prior
experience with programming as presented in Section IV-A1.

D. Research questions

The goal of this paper is to gain a deeper understanding
of how gradual programming and Hedy can support children
in learning to program, and how both the idea of gradual
programming, and the implementation of this idea into Hedy
can be improved.

We make the deliberate choice here to separately evaluate
the concept of gradual programming itself from the specific
implementation into Hedy. We do this so we can both gain
a deeper understanding of the benefits and downsides of a
gradual language, but also inform the creators of Hedy and of
future gradual programming approaches in deciding on trade-
offs in their implementations.

As such, our research questions are:
1) What are benefits of a gradual programming approach?
2) What are downsides of a gradual programming ap-

proach?
3) How can gradual programming approaches like Hedy be

improved?

E. Approach

The answers of the learners to the open questions, and the
videos of the lessons were coded by the authors using thematic

analysis [6] to answer the three research questions. Firstly,
both the written survey data and the video observations were
processed and quotations were coded. Following the initial
coding process, the codes were grouped into themes for each
research question.

V. RESULTS

The goal of this paper is to understand what the benefits and
challenges of gradual programming in Hedy are. In this section
we answer our three research questions based on participants’
survey answers and our lesson observations.

A. What are benefits of a gradual programming approach?

In the participants’ answers to the survey, we distinguish
four different benefits of the gradual programming approach.

1) Gradual learning: Asked about what they liked best
about Hedy (Q2), two children specifically mention the gradual
nature of Hedy as a benefit. L31 states that the levels “get
increasingly hard and become a real challenge”, while L37
says that the levels “get harder and form a step by step guide”.
We also saw in the lesson observations that children in the
earlier levels were very focused on building programs and
getting to know the mechanics of programming. For example,
L12 at one point remarked in an early lesson “ah, the computer
can remember my answers!”. The fact that there was no
struggle with syntax yet, meant that there was cognitive load
left to fully focus on the workings of computers.

2) Easy to use: Five children mention that what they liked
best (Q2) was that Hedy is easy to use. L9 states Hedy enables
them to create exciting programs, while specifically expressing
they aren’t good at “the programming world”. We see this as
a testament to the ease of use of Hedy.

In the lesson observations, we saw that learners could
create programs that engaged them in programming at early
levels. For example L12 built a program in Level 2 that
simulates a soccer themed fortune teller as follows (text
translated from Dutch):

print I am Hedy the fortune teller
question is ask Who will win the Soccer
Cup?
print you think it will be: question
answers is win, not win
print they will answers at random

This program will print “you think it will be” followed by
the answer of the users, and then either “they will win” or
“they will not win”. Building a similar program in Python
would entail creating a list, importing the random module and
dealing with a dozen quotation marks and brackets.

L39 created a song with repetition in Level 5 as follows:

print 'the wheels on the bus go'
repeat 3 times 'round and round'
print 'the wheels on the bus go'
repeat 3 times 'round and round'

print 'All trough the town'

In Python, using basic repetition without an iterator variable
requires the use of for i in range(3): and correct
indentation, which are hurdles for novices. In Hedy, learners
can focus on the use of the concept of repetition and its
application.

3) Control over difficulty: One aspect that participants
explicitly stated that they liked was the fact that they had
control over the difficulty of the exercises. In the later lessons,
we allowed children to explore higher levels that we had not
yet explained, while others remained at a lower level than the
current lesson. The original Hedy paper [5] envisioned the
fact that different children within a classroom could work on
similar assignments at different levels, and it is great to see
that hypothesis in action.

Five children responded with answers along those lines. For
example L25 answered on Q2 that they liked “being allowed
to work at my own pace and level”, while L20 answered on
Q5, on what is best about programming, that they could “go
to a different level and challenge yourself ”.

4) Palette and explanations: As outlined in Section III-B,
Hedy has features that go beyond gradual programming. These
features were seen as helpful; two learners pointed at these
features when asked for the best thing about Hedy (Q2).
L13 said that they liked the ‘try this’ buttons best, and L26
mentioned the explanations as being the best aspect of Hedy.

B. What are challenges of a gradual programming approach?

From the participants survey answers, we gather three
challenges of gradual programming.

1) Remembering commands: One of the design goals of
gradual languages is to make the learning of both syntax and
concepts easier. A gradual approach lowers cognitive load and
thus should allow learners to retain more information in their
long-term memory [25], [26], [27]. Despite this goal, learners
still find it challenging to remember the different commands
and their correct application. Six participants in the study state
they struggled with “remembering codes”(L7, L13 L25, L37
and L38), one stated they struggled with “remembering code
and quotation marks” and one participant found it hard to
remember “the right order of codes” (L24).

2) Syntax issues: Despite the easier design of the syntax
of Hedy as compared to other languages used by novices
such as Python, learners still found syntax in Hedy hard to
use. Five participants named syntax issues as a struggle. Two
named syntax as the hardest thing in working with Hedy (Q3),
saying that the hardest thing is “when you forget a single
quote and it stops working”(L16) while L18 named the use
of quotes in general as the hardest thing. Being asked what
can be improved (Q4), L15 and L32 suggest to get rid of the
punctuation altogether, while L18 suggests that we change the
syntax of Hedy, removing quotation marks.

One additional learner (L27) suggests as biggest improve-
ment (Q4) to add an auto-correct feature to Hedy which fixes
programs with errors. While this learner does not directly

mention syntax as an issue, the underlying sentiment is that
Hedy programs are hard to write correctly.

3) Changes to commands: A downside of a gradual lan-
guage is the fact that commands can change over the course
of levels. This was confirmed by the participants in the current
study, five of which indicated that they found the changes
difficult. L12 suggested to get rid of the levels altogether as
the biggest improvement possible to Hedy (Q4), while L11
said it would be best to limit the changes. Asked what was the
hardest about working with Hedy (Q3), L6 said that the hardest
thing was that things kept changing, and L15 specifically said
level 3 was a big leap where “everything was different all of
a sudden”. L39 stated that commands kept changing over the
levels, resulting in “a need to make the switch all the time”.

C. How can gradual programming languages like Hedy be
improved?

We distinguish three different directions in which gradual
programming approaches like Hedy can be improved.

1) Less sensitive to errors: Four learners indicate that they
want Hedy to be less sensitive. L26 and L29 indicate that the
hardest thing about using Hedy (Q3) was that it is so sensitive
and you have to be so precise. Hedy’s sensitivity was also
named as the number one thing to improve (Q4), saying we
should change Hedy so that “it is less sensitive”(L17) and “it
is less strict” (L20).

The focus on sensitivity in an interesting one. We are not
aware of other work on programming education in which
learners specifically comment on the sensitivity of languages.
We assume these observations are connected to the core idea
of gradual programming. In traditional languages, like Python
or C++, syntax is introduced form the beginning, so learners
have to accept the fact that languages are sensitive and precise
from the beginning.

In Hedy however, the preciseness of programming is de-
ferred to later in the learning sequence. At level 1, Hedy
has no syntactic elements apart from the three keywords: ask,
print and echo that may be followed by any string, including
strings with quotation marks. While Hedy is also ‘sensitive’
at level 1, e.g. a user cannot misspell a keyword, in earlier
levels we did not observe children expressing their frustration
with sensitivity. It was only at later levels, especially at level
3, where quotation marks are introduced, that children start
to have issues with Hedy being seen as ‘sensitive’ or ‘picky’
about syntax. One learner (L31) specifically indicates level 3
as the level where things started to get difficult.

These difficulties might indicate that the steps between the
levels might be too big, and children are not ready for more
complex syntax. One could for example imagine that the
introduction of an intermediate level 2.5 in which quotation
marks are allowed, but not necessary, so learners can get used
to the syntax without being forced to use it correctly.

In addition to the quotation marks being hard to get right,
we also noticed that children did not always see their value.
They sometimes expressed a desire to go back to the way
things were in level 2, because that was a lot easier. Our lesson

plan stresses that the value of quotations lies in the fact that
it allows variable names to also be printed as strings; in level
2 one cannot print the sentence “your name is Hedy” if a
variable name is declared beforehand. In the lesson plan, we
show that the following code works, but prints “your Hedy is
Hedy”:

name is Hedy
print your name is name

While we explained that the value of quotation marks is
to distinguish between variable names and plain text, this
was not convincing enough for some learners to warrant the
extra effort of putting in quotation marks. Some learners came
up with the solution of renaming a variable in case of a
conflict with a string, which is obviously a reasonable solution
from their perspective. Our additional argument that other
textual programming languages also need quotations seemed
not to convince learners also. Hence the solution might be in
changing the explanation around the use of syntax.

Fig. 6. Misspelling a keyword in level 1 produces an error message that is
relatively easy to understand.

The sensitivity issues might also be related to error mes-
sages. Error messages regarding to the misspelling of key-
words, as illustrated by Figure 6 are more precise because it
is easier to generate both the cause and a solution.

In errors related to a missing quotation mark, it is harder
to pinpoint the code issue and suggest a concrete fix, e.g. in a
program like the one shown in Figure 7 we can only detect that
there are mismatched quotation marks, and remind children to
being and end with a quotation mark.

Fig. 7. Mismatched quotation marks in level 3 produces an error message
when a quotation mark is not matched.

While that is a fine message for a program like the one in
Figure 7, the same error is produced when a single quotation
mark is used inside of a string, as demonstrated by Figure 8.
We have seen children get frustrated by this error message,
because the string here does begin and end with a quotation
mark. This is the type of situation in which children would
express the opinion that Hedy is “so sensitive”.

Fig. 8. A string containing a single quotation mark in level 3 produces an
error message that can be confusing.

2) Better error messages: Four children mention error mes-
sages as a potential area that could be improved. In particular
children indicate that they want to have “more specific error
messages” (L24), “error messages that are clearer” (L38) and
error messages that “give a better indication of what you did
wrong” (L25) or “help kids in fixing their problems” (L31).

While observing the lessons, we saw something interesting
regarding how young novices read error messages. Firstly,
we noticed that children often look at error messages, but
find them hard to read. This confirms earlier work on error
messages, e.g. the work by Barik which showed that novice
programmers read the error messages[28], but struggle with
them more than experts [29].

Our experiment sheds new light on error messages also.
In particular, we noticed that even when encouraged by
the teacher to read error messages, often children did not
understand them fully. Upon further investigation, we noticed a
potential cause of the lack of understanding of error messages.

To gain a deeper insight into the understanding that partici-
pants had of Hedy error messages, we asked them to read the
messages aloud to us. In prior work, we asked children of
the same age group to read Python code aloud [30], [31] and
found that the practice of reading aloud can reveal interesting
patterns and misconceptions.

When we asked children to read error messages aloud, we
noticed they would often skip punctuation characters.

Fig. 9. Error messages in Hedy refer to characters, such as the comma here,
by symbol, and place them between quotation marks.

Error messages in Hedy refer to characters such as comma,
period and colon with its symbol, rather than with its name. An
error message referring to a comma will use the symbol , not
the word comma. To indicate that the symbol comma is meant,
the symbol is placed between quotation marks. An example
of this is shown in Figure 9. This is not an unusual choice, in
fact, this is how most languages present characters, see also
Figure 10 that shows a similar error message in JavaScript as
shown by Chrome.

Fig. 10. Error messages in JavaScript also refer to characters, such as the
clsing curly brace here, by symbol, and place them between quotation marks.

When asking children to read these messages aloud, we
noticed they would skip these symbols entirely. For the error
message shown in Figure 9, for example, some participants
would read “You typed —pause— but that is not allowed”
interpreting the comma as a comma in the message. Other
participants read “You *typed* but that is not allowed”, inter-
preting the message as if typing code itself was not allowed.
They would then express confusion about typing what exactly
was not allowed. Other participants assumed that because the
error message was malformed, e.g. does not look like a proper
sentence, the error in the program caused the error message
to also ‘glitch’.

In hindsight, this is not unreasonable behaviour. Children
(and adults) are trained their lives to not explicitly read
punctuation, so why change that now? Novices at this level

have not really learned that quotation marks around a text
mean that you should interpret that text as the string and not
its meaning. This is especially true in Hedy where quotation
marks are not introduced until level 3. However, we saw
this behaviour also after quotation marks were introduced,
showing that this knowledge in programming syntax does not
necessarily transfer to understanding that in error messages
too a quote means a literal string value.

We suspect that error messages in other languages, such as
the message in Figure 10 will confuse novices in similar ways,
although that of course warrants further research.

3) Localized keywords: In the final evaluation, one learner
(L2) indicated as answer to Q4 that Hedy could be improved
with the adoption of keywords in the native language of the
users. This is a sentiment we heard in the lessons themselves
also. Some learners asked in the lessons why the keywords
were not in Dutch, as the interface, lessons and some parts of
the example programs (such as sentences to print and variable
names) were written in Dutch.

VI. DISCUSSION

A. Learning to program is hard

Despite Hedy’s small steps, simple syntax and extensive
explanation, 12 participants in our study still express that
they find learning to program hard. In addition to the par-
ticipants indicating issues with syntax and with remembering
code, there was one more participant who suggested to make
Hedy ‘easier’ as the biggest potential improvement, without
specifying more detailed issues.

From the lesson observations, we know that some of the
issues that these participants describe could be improved
by addressing some of the challenges described earlier in
the paper, such as more intermediate levels, explicit error
messages and localized keywords. Some issues however are
of a more conceptual nature. Learning the principles of pro-
gramming is hard, and some confusion and frustration cannot
be avoided. For example, some children in our study showed
well-known programming misconceptions, such as assuming
that a computer is ‘smart’ and can thus fix syntax problems,
or can guess the intention of a programmer, saying things like
“why can’t Hedy guess that I meant to include a print code
there?”

B. Localized keywords and gradual de-localization

Some other educational languages do allow for keywords
to be presented in the language of the learner, including
Scratch [17] and Snap! [23]. However, those languages are
block-based and as such it is a bit easier to localize keywords
since there is no parsing involved. It can be quite cumbersome
to localize keywords in textual languages because that would
entail localized versions of the grammar, but for a gradual
language this will be easier because of the small set of
keywords. Also, the keywords could start out in the local
language of a learner and gradually switch over to English to
enable a smoother transition into Python or other mainstream
languages.

C. Use of multiple correct syntaxes

The fact that many learners in our study found Hedy too
strict points in an interesting direction for future development.
In most programming languages, there is one correct way to
format a command, while other ways are not allowed. There
are some exceptions, for example Python allows both single
and double quotes around strings. Python however allows that
with the aim of make escaping a bit less cumbersome, not
with the goal of being a lenient language.

A gradual language however could allow multiple versions
of syntax, especially at lower lever where its grammar will
have a small set of production rules. Hedy for example, could
allow for strings with and without quotes at level 3, which
is the level where quotes are first introduced. Gradually, this
could be replaced by allowing strings without quotes but
giving a warning to not allowing it at higher levels. This way
kids can get used to the syntax and learn it, without being
frustrated by errors.

D. Better alignment with operators in math class

In level 6, Hedy introduces calculations, e.g. this code
is valid Hedy level 6 code: print '5 times 5 is '5

* 5. The creators of Hedy decided to use the standard
programming syntax: * for multiplication and / for division. In
these lessons, we realized that might be too far removed from
what children aged 11 to 14 are used to. When we introduced
the syntax for calculations, several children expressed surprise
that × or x were not used for multiplication. From their
perspective of course, this is a reasonable request, if × is
used for multiplication in mathematics class, and even on
calculators, why wouldn’t programming languages use it, or
use the letter x, clearly the most similar thing on the keyboard?
Similarly, the participants were expecting : or ÷ for division.

Clearly there are sensible reasons that these symbols are not
used in traditional programming languages; × is not present
on most keyboards and using a letter like x as an operator can
lead to parsing issues. However, for an educational language
like Hedy, it could be reasonable to use these less confusing
characters. Later levels could introduce the proper Python
operators, and we could even consider to allow both × and
x for a few levels, as proposed in Section VI-C, before
mandating only * and /.

E. Program repair

The suggestion of auto-correct leads to some interesting
new challenges. While the problem of automatically repairing
programs is hard in the general case, a lot of progress has
been made in recent years [32], [33], [34]

For a small language like Hedy, there are a number of
directions to explore. Firstly, random edits like inserting quotes
or replacing words by legal keywords might reach valid
programs quickly. Secondly, it could be feasible to create a

small set of canonical programs at each level, and rather than
suggesting an edit to an erroneous program, suggest a working
program with similar features for the learner to adapt to their
own use case.

F. More focus on memorization might be needed

Some participants specifically name the memorization of
commands to be hard. This is especially interesting since
the Hedy user interface contains a palette in which the new
commands of the level are shown. While we saw learners use
the buttons initially, when engaged in an exercise the learners
often stopped using the buttons and struggled to recall the
way to create certain commands. Future gradual programming
languages, and also lessons plans using gradual languages,
could consider mixing programming exercises with specific
exercises aimed at strengthening memory, such as retrieval
practice, before moving on to new concepts.

VII. CONCLUDING REMARKS

Gradual programming is a teaching approach that starts with
a simple syntax and gradually adds both concepts and more
complex syntax. The goal of this paper is to understand the
benefits and challenges of the gradual programming language
approach, and explore how it can be further improved. We
have therefore taught 39 children aged 11 to 14 for six weeks
using Hedy, to answer our research questions:

1) What are benefits of a gradual programming approach?
2) What are challenges of a gradual programming ap-

proach?
3) How can gradual programming approaches such as Hedy

be improved?
Our findings show that children appreciate the gradual na-

ture of Hedy, find Hedy easy to learn and especially appreciate
that they have control over the difficulty of Hedy. They also
like and use the built-in education features like example code
snippets (RQ1). Challenges of a gradual approach are the fact
that commands sometimes change. We also find that despite
the small steps of Hedy, remembering commands and specific
syntax remain a challenge for learners (RQ2). According to
the participants, improvements could be made by making Hedy
less sensitive to syntax errors, by improving error messages
and by localizing keywords to the native language of children
(RQ3).

The current research gives rise to a number of future
directions. Firstly, Hedy can be improved improved with the
lessons we learned from the current study. Secondly, the
current version of Hedy consists of 15 levels, so a replication
of the current work on a larger number of levels can give us
valuable insights into the working of Hedy over a longer period
of time, covering more concepts. Once Hedy is more properly
tested and evaluated, a controlled experiment comparing Hedy
to Python for introductory programming could be run.

REFERENCES

[1] T. Beaubouef and J. Mason, “Why the High Attrition Rate for
Computer Science Students: Some Thoughts and Observations,”
SIGCSE Bull., vol. 37, no. 2, pp. 103–106, Jun. 2005. [Online].
Available: http://doi.acm.org/10.1145/1083431.1083474

[2] C. B. voor de Statistiek Nederland, “StatLine - WO voltijd;
rendement en uitval, 1995 - 2005.” [Online]. Available:
https://opendata.cbs.nl/statline//CBS/nl/dataset/71063ned/table?fromstatweb

[3] A. Luxton-Reilly, “Learning to Program is Easy,” in Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, ser. ITiCSE ’16. New York, NY, USA: ACM,
2016, pp. 284–289, event-place: Arequipa, Peru. [Online]. Available:
http://doi.acm.org/10.1145/2899415.2899432

[4] I. T. C. Mow, “Issues and Difficulties in Teaching Novice Computer
Programming,” in Innovative Techniques in Instruction Technology, E-
learning, E-assessment, and Education, 2008.

[5] F. Hermans, “Hedy: A Gradual Language for Programming Education,”
in Proceedings of the 2020 ACM Conference on International
Computing Education Research, ser. ICER ’20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 259–
270, event-place: Virtual Event, New Zealand. [Online]. Available:
https://doi.org/10.1145/3372782.3406262

[6] V. Braun and V. Clarke, “Reflecting on reflexive thematic analysis,”
Qualitative Research in Sport, Exercise and Health, vol. 11,
no. 4, pp. 589–597, Aug. 2019, publisher: Routledge eprint:
https://doi.org/10.1080/2159676X.2019.1628806. [Online]. Available:
https://doi.org/10.1080/2159676X.2019.1628806

[7] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Under-
standing the syntax barrier for novices.” ACM, Jun. 2011, pp. 208–212.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1999747.1999807

[8] A. Altadmri and N. Brown, “37 Million Compilations: Investigating
Novice Programming Mistakes in Large-Scale Student Data,” SIGCSE
2015 - Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, pp. 522–527, 2015.

[9] A. Stefik and S. Siebert, “An Empirical Investigation into Programming
Language Syntax,” Trans. Comput. Educ., vol. 13, no. 4, pp. 19:1–19:40,
Nov. 2013. [Online]. Available: http://doi.acm.org/10.1145/2534973

[10] M. Piteira and C. Costa, “Learning Computer Programming: Study
of Difficulties in Learning Programming,” in Proceedings of the
2013 International Conference on Information Systems and Design of
Communication, ser. ISDOC ’13. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 75–80, event-place: Lisboa,
Portugal. [Online]. Available: https://doi.org/10.1145/2503859.2503871

[11] U. Müller, J. I. M. Carpendale, and L. Smith, The Cambridge Companion
to Piaget. Cambridge University Press, Aug. 2009, google-Books-ID:
IGggAwAAQBAJ.

[12] A. Demetriou, M. Shayer, and A. Efklides, Neo-Piagetian Theories of
Cognitive Development: Implications and Applications for Education.
Routledge, Jul. 2016, google-Books-ID: IZSkDAAAQBAJ.

[13] R. Case, “Neo-Piagetian theories of child development,” in Intellectual
development. New York, NY, US: Cambridge University Press, 1992,
pp. 161–196.

[14] R. Lister, “Toward a Developmental Epistemology of Computer
Programming,” in Proceedings of the 11th Workshop in Primary
and Secondary Computing Education, ser. WiPSCE ’16. New
York, NY, USA: Association for Computing Machinery, 2016,
pp. 5–16, event-place: Münster, Germany. [Online]. Available:
https://doi.org/10.1145/2978249.2978251

[15] S. R. Portnoff, “The introductory computer programming course is first
and foremost a language course,” ACM Inroads, vol. 9, no. 2, pp.
34–52, Apr. 2018. [Online]. Available: https://doi.org/10.1145/3152433

[16] F. Hermans and M. Aldewereld, “Programming is writing is program-
ming,” in Companion to the first International Conference on the Art,
Science and Engineering of Programming, 2017, pp. 1–8.

[17] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for All,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[18] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New
York, NY, USA: Basic Books, Inc., 1980.

[19] E. Roberts, “An Overview of MiniJava,” in Proceedings of the Thirty-
Second SIGCSE Technical Symposium on Computer Science Education,

ser. SIGCSE ’01. New York, NY, USA: Association for Computing
Machinery, 2001, pp. 1–5, event-place: Charlotte, North Carolina, USA.
[Online]. Available: https://doi.org/10.1145/364447.364525

[20] M. Felleisen, R. Findler, M. Flatt, and S. Krishnamurthi, “The Teach-
Scheme! Project: Computing and Programming for Every Student,”
Computer Science Education, vol. 14, pp. 55–77, 2004.

[21] D. Wolber, H. Abelson, and M. Friedman, “Democratizing
Computing with App Inventor,” GetMobile: Mobile Computing
and Communications, vol. 18, no. 4, pp. 53–58, Jan. 2015. [Online].
Available: https://doi.org/10.1145/2721914.2721935

[22] S. C. Pokress and J. J. D. Veiga, “MIT App Inventor: Enabling
Personal Mobile Computing,” arXiv:1310.2830 [cs], Oct. 2013, arXiv:
1310.2830. [Online]. Available: http://arxiv.org/abs/1310.2830

[23] M. Ball, J. Mönig, B. Romagosa, and B. Harvey, “Snap! A Look
at 5 Years, 250,000 Users and 2 Million Projects,” in Proceedings
of the 50th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’19. New York, NY, USA: Association
for Computing Machinery, Feb. 2019, p. 1279. [Online]. Available:
https://doi.org/10.1145/3287324.3293863

[24] D. Weintrop and U. Wilensky, “To block or not to block, that is
the question: students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children, ser. IDC ’15. New York, NY, USA: Association for
Computing Machinery, Jun. 2015, pp. 199–208. [Online]. Available:
https://doi.org/10.1145/2771839.2771860

[25] F. Paas and J. J. G. van Merriënboer, “Cognitive-Load Theory: Methods
to Manage Working Memory Load in the Learning of Complex
Tasks,” Current Directions in Psychological Science, vol. 29, no. 4,
pp. 394–398, Aug. 2020, publisher: SAGE Publications Inc. [Online].
Available: https://doi.org/10.1177/0963721420922183

[26] A. V. Robins, L. E. Margulieux, and B. B. Morrison, “Cognitive
Sciences for Computing Education,” in The Cambridge Handbook
of Computing Education Research, ser. Cambridge Handbooks in
Psychology, A. V. Robins and S. A. Fincher, Eds. Cambridge:
Cambridge University Press, 2019, pp. 231–275. [Online].
Available: https://www.cambridge.org/core/books/cambridge-handbook-
of-computing-education-research/cognitive-sciences-for-computing-
education/319D706EF1A2E8D6A6B8EA7697CE5BE2

[27] F. Hermans, The Programmer’s Brain: What every programmer needs
to know about cognition. S.l.: Manning Publications, Sep. 2021.

[28] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-
Hill, and C. Parnin, “Do Developers Read Compiler Error
Messages?” in Proceedings of the 39th International Conference
on Software Engineering, ser. ICSE ’17. IEEE Press, 2017, pp.
575–585, event-place: Buenos Aires, Argentina. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.59

[29] B. A. Becker, P. Denny, J. Prather, R. Pettit, R. Nix, and C. Mooney,
“Towards Assessing the Readability of Programming Error Messages,”
in Australasian Computing Education Conference. New York, NY,
USA: Association for Computing Machinery, 2021, pp. 181–188.
[Online]. Available: https://doi.org/10.1145/3441636.3442320

[30] F. Hermans, A. Swidan, and E. Aivaloglou, “Code Phonology: An
exploration into the vocalization of code,” in Proceedings of the 26th
Conference on Program Comprehension, ICPC 2018. Association
for Computing Machinery (ACM), 2018, pp. 308–311. [Online].
Available: https://research.tudelft.nl/en/publications/code-phonology-an-
exploration-into-the-vocalization-of-code

[31] A. Swidan and F. Hermans, “The Effect of Reading
Code Aloud on Comprehension: An Empirical Study with
School Students,” in CompEd’19 : Proceedings of the
ACM Conference on Global Computing Education. Association
for Computing Machinery (ACM), May 2019, pp. 178–184.
[Online]. Available: https://research.tudelft.nl/en/publications/the-effect-
of-reading-code-aloud-on-comprehension-an-empirical-st

[32] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
Generic Method for Automatic Software Repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, Jan. 2012.

[33] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in 2012 34th International Conference on Software Engineering
(ICSE), Jun. 2012, pp. 3–13, iSSN: 0270-5257.

[34] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, Nov.
2019. [Online]. Available: https://doi.org/10.1145/3318162

