
h

T
a
v
i
P
c

©

Journal Pre-proof

Design, implementation and evaluation of the Hedy programming
language

Marleen Gilsing, Jesús Pelay, Felienne Hermans

PII: S2590-1184(22)00055-7
DOI: https://doi.org/10.1016/j.cola.2022.101158
Reference: COLA 101158

To appear in: Journal of Computer Languages

Received date : 18 March 2022
Revised date : 29 June 2022
Accepted date : 12 September 2022

Please cite this article as: M. Gilsing, J. Pelay and F. Hermans, Design, implementation and
evaluation of the Hedy programming language, Journal of Computer Languages (2022), doi:

ttps://doi.org/10.1016/j.cola.2022.101158.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cola.2022.101158
https://doi.org/10.1016/j.cola.2022.101158


Journal Pre-proof

Manuscript Click here to
uter_Lang

Click here to vi
Jo
ur

na
l P

re
-p

ro
ofHighlights

Design, Implementation and Evaluation of the Hedy Programming
Language

• Details the full implementation of Hedy; the first gradual language for
programming education

• Introduces an EBNF extension used for merging partial grammars to
enable gradual language implementation

• Describes the first user study on Hedy

access/download;Manuscript;Hedy__Journal_of_Comp
ew linked References



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofDesign, Implementation and Evaluation of the Hedy

Programming Language

Abstract

Hedy is a programming language that implements the gradual programming
approach in which the goal is to lower the syntax barrier by starting with a
very simple language, and gradually adding both concepts and refining syn-
tax. This paper describes the design and implementation of Hedy, as well
as a first user study involving 39 children between the ages of 11 and age 14
who followed online lessons for six weeks. Based on lesson observations and
a written survey filled out by the participants, we aim to understand the im-
pact of using a gradual language. Our findings show that children appreciate
the gradual nature of Hedy, find Hedy easy to learn and especially appre-
ciate the power to control the difficulty of Hedy themselves. They also like
and frequently use built-in educational features like example code snippets.
Challenges of a gradual approach are the fact that commands sometimes
change or overlap, and remembering commands and specific syntax remain
a challenge. According to the participants, improvements could be made by
making Hedy less sensitive to syntax errors, by improving error messages and
by localizing keywords to the native language of children.

1. Introduction

Computer science programs suffer from high dropout rates, as high as
40% [1], which is higher than other programs that are traditionally considered
as difficult such as physics. The Dutch bureau of statistics reports that about
60% of physics students but only 50% of CS students finish their degree in 6
years [2].

It has been hypothesized that the high dropout rate is due to the current
instructional techniques that are used [1] and due to too high teacher expec-
tations [3]. Current introductory programming courses might ask too much
of novice CS students, while providing too little guidance.

Preprint submitted to Journal of Computer Languages June 29, 2022



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofOne of the aspects of programming that learners struggle with is the syn-

tax of programming languages. For example, Mow states that the precision
that is needed while programming requires “a level of attention to detail that
does not come naturally to human beings” [4].

To specifically address issues with syntax when learning to program, we
have recently coined the idea of a gradual programming language, a language
that teaches syntax in steps, rather than all at once [5]. As is common in
both mathematics and natural language teaching, learners using a gradual
language initially learn incomplete and partly incorrect models, which are
refined step by step. For example in mathematics, students first learn a
model of subtraction based on taking away items, such as cookies or apples,
such that 5 take away 3 equals 2, but 3 take away 5 equal 0 since we can’t
take more than 3 items. Later on, this model is refined such that 3 minus
5 equals 2. Note that this is a change both in semantics as in syntax (take
away versus minus), similar to the changes Hedy makes.

The programming language Hedy is an implementation of the idea of
gradual programming. Hedy is an open-source programming language that
runs in the browser and is available for free. In previous work, we have
manually examined almost 10,000 Hedy programs to gain an understanding
of how novices learn with Hedy [5].

This paper firstly covers the design and implementation of Hedy in more
depth than previous studies.

Secondly, it presents a lesson series executed in two classes in the Nether-
lands. The lessons were recorded, and participants filled out an open text
survey after the 12 lessons. Participants’ answers and videos were coded
using thematic analysis [6] in order to gain insights into the participant’s
experiences with Hedy and to answer the following three research questions:

1. What are the benefits of a gradual programming approach?

2. What are the challenges of a gradual programming approach?

3. How can gradual programming approaches such as Hedy be improved?

Our study shows that novices appreciate the fact that Hedy works in a
gradual way and is easy to learn. They also like the fact that they have con-
trol over the difficulty of Hedy and that built-in explanations are available.
There are some aspects of programming that Hedy helps with, but Hedy
does not remove obstacles entirely; participants in our study still struggle
with remembering the right commands and producing correct syntax. Im-

2



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofprovements might lie in a less sensitive language that allows different syntax

combinations, better error messages and the localization of keywords.
Finally, this paper presents a number of improvements that were made

to the Hedy implementation, following the findings of the above user study.

1.1. Comparison to Gilsing and Hermans 2021 [7]

This paper is an extension of a paper that previously appeared at VL/HCC
2021 [7] and also described the user study reported on in this paper.

The current paper however describes not only the user study, but also
Hedy itself in its full depth. The first Hedy paper [5] described a previous
version containing just the first thirteen levels. Since then, Hedy has been
extended to 18 levels, the grammar system has been considerably improved
and several new features have been added. This paper describes Hedy in full,
more specifically, this paper extends [7] in the following ways:

1. An updated overview of Hedy’s full 18 levels leading to a subset of
Python (Section 3).

2. A extensive description of Hedy’s implementation, including an inno-
vative EBNF syntax and corresponding system to merge grammars
(Section 4).

3. A new section describing additional educational features of Hedy (Sec-
tion 7).

4. A more extensive Discussion section, especially detailing the connection
between the Hedy language and its corresponding learning trajectory.

2. Related Work

2.1. Issues with learning syntax

Learning syntax is a well-known issue in learning to program. Denny et
al. for example found that weak students submit source code with syntax
errors in 73% of cases and even the best students do so in 50% of cases [8].
Altadmri and Brown analyzed 37 million compilations by 250,000 students
and found that the most common error is a syntax error: mismatched brack-
ets, which occurred in almost 800,000 compilations [9]. Other researchers
found that two languages commonly used for teaching, Java and Perl, are
not easier to understand than a random language, stressing the difficulties
that novices face in understanding syntax [10]. Interestingly enough, stu-
dents assess learning syntax as more problematic than teachers [11], which

3



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofmight shed some light on why little effort is given to the explicit explanation

of syntax in many programming classrooms.

2.2. Gradual learning in Natural Languages

When learning to write a first natural language, novices do not learn
syntax, punctuation and capitalization at once. Initially, they only write
letters in lowercase. Only in later stages, learners will learn to add uppercase,
periods, commas and semicolons. It has been argued that this gradual form
of teaching works best at a young age, since beginning writers are young,
and at that age learners typically operate at a low level [12]. This means
learners will be so occupied with writing, that they cannot concentrate yet
on, for example, punctuation and story-lines.

Many modern researchers believe that when novices are learning a new
skill they will operate at one of the lower Piagetian stages, irrespective of their
age [13, 14], meaning that they do not plan carefully, but instead operate
using trial and error, making small changes and continuing based on the
feedback they receive on these small steps.

This notion has also gained popularity in Computer Science education.
Lister argued that the cognitive load of students while programming might
be overloaded by the simultaneous teaching of programming concepts, syntax
and problem solving [15]. Because of this overload, students might behave
similar to younger children learning to write.

Since learning a programming language shares significant characteristics
with learning a natural language, i.e. learners in both fields have to learn
about both semantics and syntax, it has been argued that programming
education might be improved by employing instructional strategies common
in natural language teaching [16, 17].

2.3. Related Approaches for Teaching Novices

In previous research three different approaches in programming languages
for novices can be distinguished [18]:

Mini-languages Mini-languages are languages that are small and especially
designed to support learning to program. A well-known example of a
mini-language is Papert’s LOGO [19]. More modern examples of mini-
languages are Scratch [20] and Karel the Robot [21]. Mini-languages
are said to “provide a solid foundation for learning a general purpose
language” [22], but learning a mini-language can also be a goal in itself,
leading to the acquisition of algorithmic thinking.

4



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofSub-languages In the sub-language approach, programming is taught to

novices using only a set of commands from a bigger programming lan-
guage, which typically is one that is used in practice such as Pascal or
later, Java. Initially the idea of sub-languages was not to have them
successively grow, but to simply select a subset to teach. Examples are
Helium, a subset of Haskell for educational purposes [23], and Mini-
Java [24] and ProfessorJ [25] for Java.

Incremental approach As early as 1977, Shneiderman described what he
called a ‘spiral approach’ to learning programming. Shneiderman ar-
gues that, to accommodate the cognitive limits of learners, learning to
program should start with a small amount of syntax (and accompany-
ing simple semantics). He writes: “A programming course might begin
by teaching the semantics and syntax of free-format input and output
statements, then progress to the simplest forms of the assignment state-
ment and arithmetic expressions. At each step the new material should
contain syntactic and semantic elements, should be a minimal addition
to previous knowledge, should be related to previous knowledge, should
be immediately shown in relevant, meaningful examples.” Shneiderman
also recommends extensive practice of simpler forms before advancing
to new forms and argues this could help students who would otherwise
be overwhelmed [26]. While a very inspiring idea, the paper did not
come with a corresponding implementation in a language or lesson se-
ries and the term spiral approach has not caught on. Brusilovsky does
not use the term spiral, but classifies these languages as incremen-
tal [18]. He states that incremental approaches teaches set of small
subsets of a programming language, where each subset introduces new
programming language constructs. The first implementation of a spiral
or incremental approach was first created for PL/1 by Holt et al. [27]
and later also applied to Fortran [28] and Pascal [29].

Other versions of incremental teaching used subsets that were explicitly
not arranged as a hierarchy where a “higher level” contains the “lower
level”, but instead divided the language into overlapping languages like
chapters in a textbook would [30]. DrScheme (later DrRacket) follow
a similar incremental approach for Scheme [31, 32], in which users can
select different Scheme subsets that limit the options for learners by im-
plementing syntactical checks, for example to warn users that acciden-
tally use infix rather than prefix notation. DrRacket’s early language

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
oflevels are stricter then higher levels, e.g. in early languages, proce-

dures must use at least one argument and names cannot be redefined,
to prevent common but confusing mistakes.

More recently other papers have also described languages that are ex-
tended over the duration of a course, for example Cazzola and Oli-
vares [33] describe a language which gradually builds up to JavaScript,
in which students were provided with different JavaScript variants,
where each variant focused on another language feature, e.g., loops,
recursion, exception handling, object orientation. Vega et al. describe
their Java-based system Cupi2, in which students solve increasingly
more complicated problems, with partly generated programs [34].

Of the three approaches, incremental languages are most similar to Hedy,
especially the different languages of DrRacket where one of the inspirations
for the Hedy language. Hedy’s approach however, in a sense, is the oppo-
site of DrRacket’s. Where DrRacket is initially strict, warning the user with
error messages, Hedy’s syntax is initially very loose, allowing as much pro-
grams as possible, and later refines the syntax and error messages to be more
strict. This decision is based on the experience that many novices find error
messages discouraging, even when are correct and phrased precisely.

A second notable difference is Hedy’s goal to be as close as possible to
learners prior knowledge, leaning on their knowledge of natural language and
mathematics. Programming in Hedy explicitly aligns with existing knowledge
of concepts and syntax. For example, we believe that the choice of prefix
operations ((+ 4 4), also in the early languages of DrRacket) over infix
operations (4 + 4 in Hedy), while obviously easier to parse, poses both a
high and also an unnecessary cognitive load for the learner since it differs
from addition notation in mathematics, which and can reinforce the idea
that programming is not just hard but also unreasonable.

Finally, in Hedy syntax explicitly changes over the different language
levels, not so much to protect learners from making confusing mistakes, but
because we believe that syntax is a concept which also needs to be explicitly
taught and practiced. As such, Hedy’s trajectory includes language levels
that focus solely on syntactic changes. For example, at Level 4 only quotation
marks are introduced as mandatory, so print 'hello world' will need to
be used from then one.

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of2.4. Prior Work on Hedy

Hedy was initially introduced in [5]. Gilsing and Hermans [7] presents
the first user study which this paper also reports on, and Yeni and van
der Meulen [35] used the Technology Acceptance Model (TAM) to determine
children’s willingness and interest in using Hedy. Yeni and van der Meulen re-
sults indicate that many of their participants have a positive attitude towards
Hedy, and felt that Hedy was indeed “not too difficult but real programming”
in line with the original design goals, however some other participants felt
Hedy was too limiting and desired more expressive power and programming
features.

3. Language Design

3.1. Design Goals

The overarching goal of Hedy is to gradually add syntactic complexity to
a Python-like language, until novices have mastered Python itself. Hedy is
aimed at children from the age of 10. A more thorough description of Hedy’s
design philosophy can be found in [5], however in this paper we briefly present
an overview of Hedy to contextualize the findings that will be presented later
in the paper.

Hedy follows these six design goals:

1. Concepts are offered at least three times in different forms.
This ensures that learners can practice enough with concepts and are
exposed to different forms to learn their essence.

2. The initial offering of a concept is the simplest form possible.
Previous research has shown that syntax can be confusing for novices [8,
10].

3. Only one aspect of a concept changes at a time. We want to
minimize changes between each level because prior work shows that
learners are only able to transfer knowledge if the syntactic differences
are not too big [36].

4. Adding symbolic syntax elements like brackets and colons is
deferred to the latest moment possible. Previous research has
shown that operators such as == and : can be especially hard for
novices [37].

5. Learning new forms is interleaved between concepts as much
as possible. We want to give students as much time as possible to
work with concepts before the syntax changes.

7



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of6. At every level it is possible to create simple but meaningful

programs. It is important for all learners to engage in meaningful
activities [38].

Figure 1: Level 1 of the Hedy user interface in English, including the green palette with
commands on the right, and the built-in explanations above the coding field.

3.2. Levels

In this section, we describe all current levels of Hedy. The current version
of Hedy consists of 18 levels, whereas earlier papers described only thirteen
levels and studied only programs in the first seven levels [5, 7].

Level 1: Printing and input At the first level, students can print
text with no other syntactic elements than the keyword print followed by
arbitrary text. Level 1 code and the corresponding output can be seen in
Figure 1. Furthermore students can ask for input of the user using the

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofkeyword ask. Input of a user can be repeated with echo, optionally preceded

by a textual prefix.
Initially, Hedy just supported text as output modality, however we found

that just text as output is a bit limiting, so we added LOGO turtle commands
too: turn and forward. More explanation on the turtle feature can be found
in Section 7.2.

Level 2: Scalar variables using is At the second level, variables are
added to the syntax but only scalar variables, holding one value. Defining
a variable is done with the word is rather than the equals symbol fulfilling
Design Goal 3 and Design Goal 4. Furthermore users do not have to add
quotation marks to distinguish between strings and numbers: both number

is 12 and name is Hedy work.
Level 3: Assignment using is for lists It also adds the option to

work with lists. More specifically, it lets users create lists with is syntax:
animals is car, dog, armadillo.

Elements may also be indexed with at, for example animals at 1. List
indexing is not restricted to numbers, random elements can also be accessed,
with code like animals at random. Finally, Level 3 also allows learners to
add and remove list elements: add animal to animals.

Level 4: Quotation marks and types In Level 4, the first non-textual
syntactic element is introduced: the use of quotation marks to distinguish
between variables and ‘plain text’. In teaching novices we have seen that
this distinction can be confusing for a long time, so offering it early might
help to draw attention to the fact that computers need information about the
types of variables. This level is thus an interesting combination of explaining
syntax and explaining programming concepts, which underlines their inter-
dependency. The variable syntax using is remains unchanged, meaning that
learners can still use both number is 12 and name is Hedy. Note that we
do not yet require quotation marks in string assignment in Level 4, because
we want to focus on the use of quotation marks in print statements, which is
confusing enough. Quotes in string assignment become mandatory in Level
12.

Level 5: Selection with if and else flat In Level 5, selection with the
if statement is introduced, but the syntax is ‘flat’, i.e. placed on one line, re-
sembling natural language more: if name is Bert print 'Yellow'. else
statements are also included, and are also placed on one line. Learners are
allowed but not required to use a newline before an else keyword.

Level 6: Calculations In Level 6, students learn to calculate: addition,

9



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofmultiplication, subtraction and division are introduced. Therefore addition,

multiplication, subtraction and division are introduced. While this might
seem like a simple step, our experience taught us that the use of * for mul-
tiplication, rather than x as in mathematics is a steep learning curve and
should be treated as a separate learning goal.

Level 7: Repetition with repeat x times In Level 7, repetition with
a simple syntactic construction is introduced, as common in other educa-
tional programming languages [39, 40]: repeat 5 times. In this initial form,
repeat is placed on one line, like if in Level 5:

repeat 5 times print 'Hello'
It is allowed to use an if within a repeat but since that creates a very

long line. we do not show that in the example code snippets.
Level 8: Code blocks with one level of nesting After Level 7, there

is a clear need to ‘move on’, since the body of a loop (and also that of an
conditional) can only consist of one line, which limits the possibilities of pro-
grams that users can create. This limitation could be a motivating factor for
learners: rather than ‘having to learn’ the block structure of Python, learners
are motivated by the prospect of building larger and more interesting pro-
grams (Design Goal 6). Since the end goal of Hedy is to teach Python, we
choose to denote blocks using indentation rather that begin and end blocks.
Using curly braces would not fit our Design Goal 4 of deferring symbolic syn-
tax elements to the end of the learning trajectory. The syntax of the repeat
itself remains otherwise unchanged as per Design Goal 3, so the new form is:

repeat 5 times

print 'Hello'
print 'I am repeated 5 times'

If Hedy users forget indentation, they receive a focused error message as
shown in Figure 2. Nesting two levels deep will result in a message that that
is not yet allowed in Level 8.

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: Error message given when indentation is missing in Level 8

Level 9: Code blocks with multiple levels of nesting To allow for
enough interleaving of concepts (Design Goal 5), we defer the introduction
of syntax concepts for now, and focus on more conceptual additions: the
nesting of multiple blocks, for example a repeat command containing a
condition, or the other way around, or multiple nested repeat blocks. We
know indentation is a hard concept for students to learn, so nesting, using
multiple levels of indentation, warrants its own level (Design Goal 3).

Level 10: For syntax looping over list In Level 10, learners the range
syntax, looping over the values in a list, for example using with for animal

in animals. This allows the customization of stories, drawing and songs
and forms a gradual step towards the more complex numerical for construct
using range.

Level 11: For syntax with in range Once blocks are sufficiently au-
tomatized, learners will see a more Python-like form of the for loop, namely:
for i in range 0 to 5. This allows for access to the loop variable i and this
allows for more interesting programs, such as counting to 10. As per Design
Goal 3, the change is made small, and to do so (following Design Goal 4),
brackets and colons are deferred to a later level, but indentation which was
introduced in Level 8 remains.

Level 12: Data types Learners are now allowed to use floats and need
to place quotation marks around strings to distinguish them from numbers.

Level 13: Logical expressions In Level 13, learners learn about and
and or in if statements to combine multiple conditions.

Level 14: Less than and greater than In Level 14, Learners learn

11



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofabout < (=) and > (=) in preparation for while loops.

Level 15: While loops In Level 15, learners are introduced to the
while loop. With the previous knowledge < (=) and > (=), learners can
make basic while loops.

Level 16: Adding rectangular brackets In this level, learners en-
counter a type of brackets for the first time, because Level 16 adds rectan-
gular brackets for list access, which up to now was done with the keyword
at, following Design Goal 2. This level also explains accessing lists with a
numeric index, starting at 1. While numerical access is possible from Level 3
we don’t explicitly explain it in the learning sequence since there is not much
value in using it without a loop.

Level 17: Learning elif and the colon symbol To make the step to
full Python, learners will need to use the colon to denote the beginning of
a block, in both loops and conditionals. Because blocks are already known
and practiced over several levels, we can teach learners to use a colon before
every indentation. This level also introduces elif to allow for more exciting
programs, since just adding a colon does not really allow for more meaningful
programs (Design Goal 6).

Level 18: Adding round brackets Level 18 adds round brackets in
print, range and input. As per Design Goal 4, these are added as late as
possible.

3.3. User Interface

The current user interface of Hedy is shown in Figure 1. The interface
includes an editor in which to enter code on the left, and a field for output
on the right. In addition to the gradual approach, Hedy’s UI has other edu-
cational features. For example, when starting a level, the programming field
contains ‘start code’ that demonstrates the concepts that will be introduced
in this level, so learners can try it immediately.

Hedy also features a palette that many educational languages like Scratch,
Snap! and App Inventor also have. A palette is an overview of all possible
blocks that can be dragged into the programming field [41, 42, 43]. A palette
is helpful, because prior work shows that looking up information in a separate
place increases cognitive load [44]. Students have confirmed this in studies.
For example, Weintrop and Wilensky found that students frequently cited
the browsability of blocks-based environments as a feature that made it easy
to use [45].

12



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFigure 1 shows the palette on the right, where each of the new commands

in a level is shown with a ‘Try’ button, which will place the corresponding
‘demo code’ in the editor. This demo code is not executed automatically, so
the user can adapt it before running the code.

The palette is a feature that is commonly associated with block-based
languages, but in principle, textual languages like Python or JavaScript could
also offer a palette to their users with possible code snippets. Weintrop
and Wilensky suggested this in prior work: “Adding an easily browsed, well
organized library of valid commands that lives inside the Java or Python
programming environment is one example of how we can use what we learn
from novices about what makes blocks-based tools easy to improve and better
prepare them for the transition to the text based tools that await them in more
advanced courses” [45].

However a palette for textual languages is complicated by the vast num-
ber of options that would be possible. What language features would be
shown, and in what exact form? Because the Hedy language is initially
small, creating a palette is more straight-forward.

In addition to the palette with demo code snippets, Hedy also contains
built-in explanation and exercises for each level. Again, an integrated tutorial
is not a feature that is necessarily part of the gradual language paradigm,
yet is enabled by the small size of each level, which leads to the possibility
to show a few brief explanations per level.

4. Implementation

Currently Hedy is implemented in Python, using the Lark parser.1 Code
is parsed and subsequently transpiled into Python, for example by adding
brackets where needed. The resulting Python code is then executed. Hedy
comes with a built-in Ace2 editor that allows Hedy code to be edited in the
browser, as common in modern web-based IDE’s for teaching such as repl.it
and Trinket. We execute the resulting Python code with the Skulpt library3.

The use of Skulpt enable teachers to run Hedy without installing anything
but a browser, and will thus likely increase adoption in schools where teachers
often have limited or no possibilities to install software. It also means Hedy

1https://github.com/lark-parser/lark
2https://github.com/ajaxorg/ace
3https://github.com/skulpt/skulpt

13



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofcan be used on mobile phones and tablets. Hedy’s code base is open source,

available on GitHub.4.
The remainder of this section explains Hedy’s grammar and grammar

merging system that are at the core of Hedy’s implementation.

4.1. Grammars

The most important part of Hedy are its grammars that enable the grad-
ual nature of the programming experience. Listing 1 shows the core part of
the grammar used in Level 1, which allows for five basic commands: print,
ask and echo for text output, and forward and turn for turtle output.

program: _EOL* (command _EOL+)* command?

command: print | ask | echo | turtle | error_invalid |

error_invalid_space

print: _PRINT print_argument

ask: _ASK print_argument

echo: _ECHO print_argument

print_argument: (_SPACE text)?

turtle: _FORWARD (_SPACE NUMBER)? | _TURN (_SPACE (_LEFT |

_RIGHT))?

error_invalid_space: _SPACE text?

error_invalid: textwithoutspaces text?

Listing 1: Partial Grammar of Level 1 in Lark

4.1.1. Symbol Tokens

Tokens definitions are not shown here for brevity, but are defined using
uppercase names, such as EOL for end of line or SPACE for one or more
spaces, this is a Lark convention that filters out uppercase production rules
in the abstract syntax tree.

4.1.2. Keyword Tokens

Tokens for keywords are also uppercase, since the name of the rule de-
termines the name in the AST, so tokens need not to be kept. Examples of
keyword tokens are for example PRINT and ECHO. These will be replaced by
their concrete strings in a preprocessing step. Initially this was done to make
the grammar more readable, but recently Hedy supports localized keywords,

4https://github.com/felienne/hedy

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofso they can also be replaced by keywords in other languages (see further

Section 7.4).

4.1.3. Error Productions

All Hedy levels make extensive use of error production rules, prefixed in
the grammar with error .

For example, the rule error invalid matches any word that is placed
before text separated with a space. Because Lark supports prioritization in
the production rules, this rule is only matched when no prior rule (such as
print or ask) matches. As such, the Level 1 parser also accepts show hello

world and turns that into a parse tree with an error node. This allows us
to give specific error messages like “prnt is not a command in Hedy. Did
you mean print?”., as shown in Figure 9. Similarly error space allow us to
catch lines of code that start with spaces to warn learners you can’t begin
lines with spaces, as a preparation for the space sensitivity of Python.

You might notice in Listing 1 that commands do not need an argument
to parse, e.g. the argument of print in the production is print argument,
defined as ( SPACE text)?. This too is done to generate more informative
error messages. Before the transpilation step, we check the AST to see if all
commands have arguments, and when relevant, whether the arguments have
the right type. Using that information we can also generate more informative
error messages, such as the message shown in Figure 3.

Figure 3: Error message given when a print command is used without an argument

You can also see in the grammar that rules forward and turn are gathered
under one production rule, since the UI needs to adapt to the presence of

15



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofturtle code by adding a turtle canvas, as shown in Figure 4. To ease that

analysis, both turtle commands are combined under one node so the parser
can return a Boolean value indicating the presence of turtle commands.

Figure 4: When one of the turtle commands (turn or forward are used, the Hedy UI
shows a smaller text output field and a large turtle canvas.

4.2. Grammar Merging

In our initial implementation, every Hedy level simply used its own gram-
mar, as if each level was a truly separate language. This worked, but led to
considerable duplication in the grammars, as each level redefined all rules of
the previous level. This is not a problem when the rules change from one
level to the next, but is needless duplication when the rules remain the same.

We have therefore introduced a grammar merging preprocessing step,
that transforms partial grammars into full Lark compatible grammars. The
basics of the grammar merging system are that rules may be redefined at
new levels. When a rule is not defined at Level n, the definition from n− 1
is copied. This already saves a lot of duplication.

However, sometimes we want to do operations that are a more complex,
and therefore we add an abstraction on top of EBNF, which defines how
rules will be merged in later levels. Our addition adds the following syntax
to EBNF defining merges:

+ = To add new commands to an existing disjunction

− = To remove commands from an existing disjunction

> To indicate priorities between new options

16



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe process of merging the partial grammars works pairwise; starting

with the grammars of Level 1 and 2. These two grammars are merged to-
gether to create a full grammar for level 2. Subsequently, the grammar of
Level 3 in merged into the grammar resulting from levels 1 and 2, and this
process is repeated until all grammars are merged into a complete file, as
shown in Figure 5 .

We call a grammar into which all prior levels are merged the total gram-
mar for a level.

Figure 5: Process of merging partial grammar

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of4.2.1. Merging Example

Let’s look at an example of grammar merging in action. The (simplified)
grammar of Level 3 is shown in Listing 3. In Level 3, we add the option to
define lists, and the option to access list elements. Note that var here in a
built-in Lark construct that defines variable names starting with underscore
or a letter, optionally followed by another underscore or letter or a number.

assign_list: var _SPACE _IS _SPACE text (_COMMA text_list)+

list_access: var _SPACE _AT _SPACE (INT | _RANDOM)

_print_argument: (list_access | text | punctuation)*

assign: var _SPACE _IS _SPACE (list_access | text)

add: _ADD_LIST text _SPACE _TO_LIST _SPACE var

remove: _REMOVE text _SPACE _FROM _SPACE var

command :+= assign_list | add | remove > error_invalid

Listing 2: Grammar of Level 1 in Lark

Unchanged Rules In the grammar of Level 3 we can firstly see that
not all rules present in the grammars of Level 1 are redefined in Level 3.
For example, program is not redefined, and as such, the existing definition
of Level 1 will be used in the total grammar. Not that Level 2 also did not
redefine this production.

New Rules Furthermore, we see that a number of new rules are intro-
duced, such as creating a list with the rule assign list. This rule allows
for the definition of lists, for example: animals is cat, dog, parrot. An-
other addition is list access, which defines accessing a list, using either
a number animals at 4 or with random access: animals at random. Be-
cause these rules were not present in the grammar of Level 2, they are added
to the merged grammar. Finally, add and remove are added to grow and
shrink lists.

Redefined Rules Some rules get a new definition, for example the ar-
gument of a print: print argument. While in Level 1 print could only use
text as an argument, we now also add the option to print access into a list,
with print animals at 4

Partially Changed Rules Because print argument is changed, there
are also rules that are partially changed. The rule print itself is not defined
again, and thus stays the same (namely print: PRINT print argument)
However, because its arguments may now also include list access, conceptu-
ally the rule print also changed.

18



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofExpanded Disjunctions command was initially defined as this disjunc-

tion: print | ask | echo | turtle | error invalid space | comment

| error invalid. In Level 2 this rule was already expanded, since assign-
ment was introduced with a new rule. Level 3’s grammar expands the rule
even more by adding the rules assign list, add and remove as possible
commands.

Forced Ordering Because we want the error production rule error invalid

to only match if none of the other rules match, this needs to be placed at the
end of the disjunction to indicate the right priority. Our syntactic element
> adds this rule at the end of the existing options.

The full syntax and the semantics of Hedy programs at all levels, as ex-
pressed in their corresponding Python programs can be found in our Github
Repository 5

4.3. Transpiling to Python

Once Hedy programs have been parsed, the resulting abstract syntax tree
(AST) is then transformed into Python, which we run in the browser using
Skulpt. In many cases, this transformation is a simple process, for example,
print hello in Level 1 only requires us to surround the print argument hello
with brackets and quotes.

In some cases however, we need to perform more elaborate processing of
the AST. For example, in levels 2 and 3, where users may freely mix variables
and plain text strings. Enabling this is done in two steps: in the first step
we gather all variable names from the assignment nodes of the AST. In the
second step we determine, for each print node, whether its children are con-
tained in the list of variable names. If so, they are printed without quotes,
if not, they are printed with quotes. Hence, this Hedy Level 2 program:

name is Hedy

print hello name

will be converted into:

name = ‘Hedy’

5https://github.com/Felienne/hedy/blob/main/semantics/SEMANTICS.md

19



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofprint(‘hello’, name)

5. Research setup

Now that we have covered the design and implementation of Hedy, it
is time to direct our attention to its first qualitative evaluation. The goal
of this study is to understand the benefits and challenges of the gradual
programming language approach, and explore how it can be further improved.
To that end, 39 seventh-graders followed 12 hours of Hedy lessons covering
the first 6 levels of Hedy. After these lessons, the participants filled out a
written survey on their experiences.

5.1. Participants

In total, 39 children participated in our study, all students from two
different classes within one school in the Netherlands, in a grade equivalent
to American seventh grade.

5.1.1. Prior experience

From the 39 children in our study, 36 had prior experience with pro-
gramming. Figure 6 shows an overview of the programming language(s) the
participants were familiar with before the study. Most children (29 out of
36 with experience, or 80%) had experience only with Scratch, hence no
experience with textual languages.

Figure 6: Languages the participants had experience with

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe children acquired their previous experience at various different sources,

as shown in Figure 7. Note that the total in this graph is more than 39, since
some children acquired programming experience in, e.g. elementary school
and at home and are thus represented in Figure 7 twice.

Figure 7: Places where the participants gained programming experience

5.1.2. Age

Out of the 39 participants, 38 disclosed their age and gender. The average
age of these 38 participants is 12.8, and the age distribution can be seen in
Figure 8.

Figure 8: Ages of participants in the study

5.1.3. Gender

The 38 students that disclosed gender were 22 boys and 16 girls.

21



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of5.2. Lessons

All participants followed 12 online Hedy lessons during 6 consecutive
weeks, each lesson of one hour. All lessons were conducted online by the
first author. She is trained and employed as a teacher, but is not a regular
teacher at the school in which the study was run, and she was not previously
acquainted with the children in the study.

Each week of lessons has a similar setup, in which the students followed
instruction in the first lesson of the week. In the instruction, the guest teacher
explained the basic concepts of a level, and gave students an assignment to
work on. After this instruction part of the lesson, lasting about 15 minutes,
the students would be allowed to work on Hedy and the assignment inde-
pendently. If students ran into issues, they could ask questions with voice
or using the chat, and share their screen where needed. In the second lesson
of the week, children were allowed to continue working on their assignments
and could again ask questions where needed.

Videos of the lessons were recorded, including the screens of the teacher
when they were teaching, and the screens of students when they were screen
sharing, but without the video of the learners, for privacy reasons.

5.3. Survey

After the 12 lessons were completed, students were asked to fill out a
written open text survey in Dutch, consisting of these questions:

1. Q1 The greatest thing I created with Hedy was...

2. Q2 What I liked most about Hedy was...

3. Q3 The hardest thing about Hedy was...

4. Q4 If I could change one thing about Hedy, it would be...

5. Q5 The thing I like most about programming is...

In addition to these questions, demographic information (gender and age)
was collected and the information about prior experience with programming
as presented in Section 5.1.1.

5.4. Research questions

The goal of this paper is to gain a deeper understanding of how gradual
programming in general, and Hedy in particular, can support children in
learning to program, and how both the idea of gradual programming, and
the implementation of this idea into Hedy can be improved.

22



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofWhile it is hard to separate the Hedy language and the gradual pro-

gramming approach from each other, we make the deliberate choice here to
separately evaluate the concept of gradual programming itself from the spe-
cific implementation into Hedy. We do this so we can both gain a deeper
understanding of the benefits and downsides of a gradual language, but also
inform designers of both Hedy and future gradual programming approaches
in deciding on trade-offs in their implementations.

As such, our research questions are:

1. What are the benefits of a gradual programming approach?

2. What are the challenges of a gradual programming approach?

3. How can gradual programming approaches like Hedy be improved?

5.5. Data Collection and Processing

The answers of the learners to the open questions, and the videos of
the lessons were coded by the authors using thematic analysis [6] to answer
the three research questions. Firstly, both the written survey data and the
video observations were processed and quotations were coded. Following the
initial coding process, the codes were grouped into themes for each research
question.

6. Results

In this section we answer our three research questions based on partici-
pants’ survey answers and our lesson observations. Note that all quotes that
we present here were originally given in Dutch by participants. We have
translated them as best as possible for presentation in this paper.

6.1. RQ1: What are benefits of a gradual programming approach?

In the participants’ answers to the survey, we distinguish four different
benefits of the gradual programming approach.

6.1.1. Gradual learning

Asked about what they liked best about Hedy (Q2), two children specif-
ically mention the gradual nature of Hedy as a benefit. L31 states that the
levels “get increasingly hard and become a real challenge”, while L37 says
that the levels “get harder and form a step by step guide”. We also saw in
the lesson observations that children in the earlier levels were very focused

23



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofon building programs and getting to know the mechanics of programming.

For example, L12 at one point remarked in an early lesson “ah, the computer
can remember my answers!” when looking at a program containing echo. In
observing students working with Level 1, we saw relatively little struggle with
syntax, especially compared to our experiences teaching Python to the same
age group in the same setting, using similar assignments. This strengthens
our belief that Hedy lowers the cognitive load associated with syntax.

6.1.2. Easy to use

Five children mention that what they liked best (Q2) was that Hedy is
easy to use. L9 states Hedy enables them to create exciting programs, while
specifically expressing they aren’t good at “the programming world”. We see
this as a testament to the ease of use of Hedy.

In the lesson observations, we saw that learners could create programs
that engaged them in programming at early levels. For example L12 built a
program in Level 2 that simulates a soccer themed fortune teller as follows
(text translated from Dutch):

print I am Hedy the fortune teller

question is ask Who will win the Soccer Cup?

print you think it will be: question

answers is win, not win

print they will answers at random

This program will print “you think it will be” followed by the answer of
the users, and then either “they will win” or “they will not win”. While this
program might be very confusing to experienced programmers because of the
lack of symbols indicating the different roles of program parts, this is a trade
off, because building a similar program in Python would entail creating a list,
importing the random module and dealing with a dozen quotation marks and
brackets.

L39 created a song with repetition in Level 5 as follows:

print 'the wheels on the bus go'
repeat 3 times print 'round and round'
print 'the wheels on the bus go'
repeat 3 times print 'round and round'
print 'All through the town'

24



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofIn Python, using basic repetition without an iterator variable requires the

use of for i in range(3): and correct indentation, which are hurdles for
novices. In Hedy, learners can focus on the use of the concept of repetition
and its application.

6.1.3. Control over difficulty

One aspect that participants explicitly stated that they liked was the fact
that they had control over the difficulty of the exercises. In the later lessons,
we allowed children to explore higher levels that we had not yet explained,
while others remained at a lower level than the current lesson. The original
Hedy paper [5] envisioned the fact that different children within a classroom
could work on similar assignments at different levels, and this observation
confirms our initial hypothesis.

Five children responded with answers along those lines. For example L25
answered on Q2 that they liked “being allowed to work at my own pace and
level”, while L20 answered on Q5, on what is best about programming, that
they could “go to a different level and challenge yourself ”.

6.1.4. Palette and Explanations

As outlined in Section 3.3, Hedy has features that go beyond gradual
programming: a palette and built-in explanation and examples. These fea-
tures were seen as helpful; two learners pointed at these features when asked
for the best thing about Hedy (Q2). L13 said that they liked the ‘try this’
buttons best, and L26 mentioned the explanations as being the best aspect
of Hedy.

6.2. RQ2: What are challenges of a gradual programming approach?

From the participants survey answers, we gather three challenges of grad-
ual programming.

6.2.1. Remembering commands

One of the design goals of gradual languages is to make the learning of
both syntax and concepts easier. A gradual approach lowers cognitive load
and thus should allow learners to retain more information in their long-term
memory [44, 46, 47]. Despite this goal, learners still find it challenging to
remember the different commands and their correct application. Six partic-
ipants in the study state they struggled with “remembering codes”(L7, L13

25



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofL25, L37 and L38), one stated they struggled with “remembering code and

quotation marks” and one participant found it hard to remember “the right
order of codes” (L24).

6.2.2. Syntax issues

Despite the easier design of the syntax of Hedy as compared to other
languages used by novices such as Python, learners still found syntax in Hedy
hard to use. Five participants named syntax issues as a struggle. Two named
syntax as the hardest thing in working with Hedy (Q3), saying that the
hardest thing is “when you forget a single quote and it stops working”(L16)
while L18 named the use of quotes in general as the hardest thing. Being
asked what can be improved (Q4), L15 and L32 suggest to get rid of the
punctuation altogether, while L18 suggests that we change the syntax of
Hedy, removing quotation marks.

One additional learner (L27) suggests as biggest improvement (Q4) to
add an auto-correct feature to Hedy which fixes programs with errors. While
this learner does not directly mention syntax as an issue, the underlying
sentiment is that Hedy programs are hard to write correctly.

6.2.3. Changes to commands

A downside of a gradual language is the fact that commands can change
over the course of levels. This was confirmed by the participants in the
current study, five of which indicated that they found the changes difficult.
L12 suggested to get rid of the levels altogether as the biggest improvement
possible to Hedy (Q4), while L11 said it would be best to limit the changes.
Asked what was the hardest about working with Hedy (Q3), L6 said that
the hardest thing was that things kept changing, and L15 specifically said
Level 3 was a big leap where “everything was different all of a sudden”. L39
stated that commands kept changing over the levels, resulting in “a need to
make the switch all the time”.

6.3. RQ3: How can gradual programming languages like Hedy be improved?

We distinguish three different directions in which gradual programming
approaches like Hedy can be improved.

6.3.1. Less sensitive to errors

Four learners indicate that they want Hedy to be less sensitive. L26 and
L29 indicate that the hardest thing about using Hedy (Q3) was that it is so

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofsensitive and you have to be so precise. Hedy’s sensitivity was also named

as the number one thing to improve (Q4), saying we should change Hedy so
that “it is less sensitive”(L17) and “it is less strict” (L20).

The focus on sensitivity is an interesting one. We are not aware of other
work on programming education in which learners specifically comment on
the sensitivity of languages. We assume these observations are connected to
the core idea of gradual programming. In traditional languages, like Python
or C++, syntax is introduced from the beginning, so learners have to accept
the fact that languages are sensitive and precise from the beginning.

In Hedy however, the preciseness of programming is deferred to later in
the learning sequence. At Level 1, Hedy has no syntactic elements apart
from the three keywords: ask, print and echo that may be followed by any
string, including strings with quotation marks. While Hedy is also ‘sensitive’
at Level 1, e.g. a user cannot misspell a keyword, in earlier levels we did
not observe children expressing their frustration with sensitivity. It was only
at later levels, especially at Level 4, where quotation marks are introduced,
that children start to have issues with Hedy being seen as ‘sensitive’ or ‘picky’
about syntax. One learner (L31) specifically indicates Level 4 as the level
where things started to get difficult.

These difficulties might indicate that the steps between the levels might
be too big, and children are not ready for more complex syntax. One could
for example imagine that the introduction of an intermediate level 2.5 in
which quotation marks are allowed, but not necessary, so learners can get
used to the syntax without being forced to use it correctly.

In addition to the quotation marks being hard to get right, we also no-
ticed that children did not always see their value. They sometimes expressed
a desire to go back to the way things were in Level 2, because that was a
lot easier. Our lesson plan stresses that the value of quotations lies in the
fact that it allows variable names to also be printed as strings; in Level 2 one
cannot print the sentence “your name is Hedy” if a variable name is declared
beforehand. In the lesson plan, we show that the following code works, but
prints “your Hedy is Hedy”:

name is Hedy

print your name is name

While we explained that the value of quotation marks is to distinguish
between variable names and plain text, this was not convincing enough for

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofsome learners to warrant the extra effort of putting in quotation marks. Some

learners came up with the solution of renaming a variable in case of a conflict
with a string, which is obviously a reasonable solution from their perspective.
Our additional argument that other textual programming languages also need
quotations seemed not to convince learners also. Hence the solution might
be in changing the explanation around the use of syntax.

Figure 9: Misspelling a keyword in Level 1 produces an error message that is relatively
easy to understand.

The sensitivity issues might also be related to error messages. Error
messages regarding to the misspelling of keywords, as illustrated by Figure 9
are more precise because it is easier to generate both the cause and a solution.

In errors related to a missing quotation mark, it is harder to pinpoint the
code issue and suggest a concrete fix, e.g. in a program like the one shown
in Figure 10 we can only detect that there are mismatched quotation marks,
and remind children to begin and end with a quotation mark.

28



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 10: Mismatched quotation marks in Level 3 produces an error message when a
quotation mark is not matched.

While that is a fine message for a program like the one in Figure 10,
the same error is produced when a single quotation mark is used inside of a
string, as demonstrated by Figure 11. We have seen children get frustrated
by this error message, because the string here does begin and end with a
quotation mark. This is the type of situation in which children would express
the opinion that Hedy is “so sensitive”.

Figure 11: A string containing a single quotation mark in Level 4 produces an error
message that can be confusing.

6.3.2. Better error messages

Four children mention error messages as a potential area that could be
improved. In particular children indicate that they want to have “more

29



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofspecific error messages” (L24), “error messages that are clearer” (L38) and

error messages that “give a better indication of what you did wrong” (L25)
or “help kids in fixing their problems” (L31).

While observing the lessons, we saw something interesting regarding how
young novices read error messages. Firstly, we noticed that children often
look at error messages, but find them hard to read, which is in line with earlier
work on error messages. For example, the work by Barik which showed that
novice programmers read the error messages [48], and the work of Becker
et al. who found that beginners struggle with error messages more than
experts [49].

Our experiment sheds new light on error messages also. In particular, we
noticed that even when encouraged by the teacher to read error messages,
often children did not understand them fully. Upon further investigation, we
noticed a potential cause of the lack of understanding of error messages. To
gain a deeper insight into the understanding that participants had of Hedy er-
ror messages, we asked them to read the messages aloud to us. In prior work,
we asked children of the same age group to read Python code aloud [37, 50]
and found that the practice of reading aloud can reveal interesting patterns
and misconceptions.

When we asked children to read error messages aloud, we noticed they
would often skip punctuation characters.

Figure 12: Error messages in Hedy refer to characters, such as the comma here, by symbol,
and place them between quotation marks.

Error messages in Hedy refer to characters such as comma, period and
colon with its symbol, rather than with its name. An error message referring
to a comma will use the symbol , not the word comma. To indicate that the
symbol comma is meant, the symbol is placed between quotation marks. An
example of this is shown in Figure 12. This is not an unusual choice, in fact,

30



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofthis is how most languages present characters, see also Figure 13 that shows

a similar error message in JavaScript as shown by Chrome.

Figure 13: Error messages in JavaScript also refer to characters, such as the closing curly
brace here, by symbol, and place them between quotation marks.

When asking children to read these messages aloud, we noticed they would
skip these symbols entirely. For the error message shown in Figure 12, for
example, some participants would read “You typed —pause— but that is not
allowed” interpreting the comma as a comma in the message. Other partic-
ipants read “You typed but that is not allowed”, interpreting the message
as if typing code itself was not allowed. They would then express confusion
about typing what exactly was not allowed. Other participants assumed that
because the error message was malformed, e.g. does not look like a proper
sentence, the error in the program caused the error message to also ‘glitch’.

In hindsight, this is not unreasonable behaviour. Children (and adults)
are trained all their lives to not verbalize punctuation, so why change that
now? Novices at this level have not really learned that quotation marks
around a text mean that you should interpret that text as the string and not
its meaning. This is especially true in Hedy where quotation marks are not
introduced until Level 4. However, we saw this behaviour also after quotation
marks were introduced, showing that this knowledge in programming syntax
does not necessarily lead to the understanding that in error messages quoted
text means a literal string value.

We suspect that error messages in other languages, such as the message
in Figure 13 will confuse novices in similar ways, although that of course
warrants further research.

6.3.3. Localized Keywords

In the final evaluation, one learner (L2) indicated as answer to Q4 that
Hedy could be improved with the adoption of keywords in the native language
of the users. This is a sentiment we heard in the lessons themselves also.
Some learners asked in the lessons why the keywords were not in Dutch,
since the interface, lessons and some parts of the example programs (raw
text, variable names) were also written in Dutch.

31



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of7. Recent Additions to Hedy

The above user study and other experiments have led to a number of
new features and additions to Hedy which we will describe in this section.
These features were not yet incorporated in the presented user study, and
their effectiveness will be the topic of future studies.

7.1. Read Textual Output Aloud

We have not only improved the Hedy language and its interpreter, but
also the Hedy interface. For example, we have added the option to have the
textual output of a Hedy program read aloud. In other observations, we saw
children copy-pasting the output of Hedy programs into Google Translate,
which allows for it to be read aloud. Especially when the output is a song,
this makes the output more authentic to children. Using the Google Speech
API it was relatively easy to add this feature into the Hedy user interface
directly. Figure 14 shows the UI element that learners can use to select a
voice. When a voice is selected and code is run, textual output will be printed
as before, and the output will also be read aloud.

Figure 14: Drop down list to choose from different voices

This feature adds two different values: Firstly, it adds fun! Children
enjoy hearing robot voices read stories and ‘sing’ songs, increasing their en-
gagement. Secondly, it creates an inclusive environment in which both low
vision users and sighted users can share the same experience and collaborate,
rather than having a different output for low vision users.

7.2. Turtle Graphics

Initially, Hedy only supported textual output, however in the study de-
scribed in [35], some children explicitly requested other modalities, like the
drawing turtle, which the researchers showed them in Python. We therefore
added the commands turn and forward so children can also create drawn

32



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofoutput and create geometric shapes and images, as shown in Figure 4 earlier

in this paper. We doubted a bit whether the turtle commands should be
added to Level 1 or should come later in the trajectory. On the one hand
side, we want to keep Level 1 simple to not overwhelm learners, but on the
other hand, we also want to demonstrate to children what Hedy’s possibili-
ties are so they understand the path that they will embark on. Ultimately
we have decided for that reason to add turtle options to Level 1.

7.3. Improved Error Messages

After this user study, we have updated Hedy error messages that refer to
characters (such as ‘,‘), showing the characters in words(such as comma), so
they stand out more to users, as shown in Figure 15.

Figure 15: Error messages in Hedy refer to characters, such as the comma here, by symbol,
and place them between quotation marks.

7.4. Localized Keywords

One of the more surprising outcomes of this study was the desire of users
for localized keywords. Since the Netherlands has the highest command of

33



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofEnglish outside of English speaking countries6, we expected teenagers to be

happy using English keywords, especially given the small set of keywords in
the earlier Hedy levels.

However, prior research shows that children learn programming con-
structs quicker when they program in their own native language [51], and
other educational languages do allow for keywords to be presented in the
language of the learner, including Scratch [20] and Snap! [43].

The wishes of our users combined with the findings of Dasgupta led us
to implement localized keywords, so, for example, Spanish users can use
imprimir hola! in addition to print hola. We allow both English key-
words and the native language to cater for bilingual learners, and for learners
that might already know some but not all English keywords.

We achieve this by substituting the keyword tokens, such as PRINT or
ASK by a disjunction with their localized counterparts in the grammar merg-
ing step: "print" | "imprimir".

Figure 16 shows the UI, code and its execution and the palette in Spanish.
Because we rely on community efforts for our translation, not all parts have
been translated yet.

6https://www.ef.nl/epi/regions/europe/netherlands/

34



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 16: Hedy User Interface shown (largely) in Spanish.

7.5. Program Repair

The suggestion by users in our study that programs should be able to
auto-correct themselves lead to some interesting new challenges. While the
problem of program repair is hard in the general case, a lot of progress has
been made in recent years [52, 53, 54].

Since the user study, we have implemented some simple repair techniques.
For example, programs that start with a space but are otherwise correct can
be transpiled to Python by removing the space. We made the choice to
indeed repair the program and run the repaired program. For the user this
results in both a warning message and execution of the code, as shown in
Figure 17. As an extra help, students can click the Hedy light bulb, which
will show the correct code.

In some cases, such as the program shown in 9, where the keyword print

is misspelled as prnt, we can repair the program, since we can reliably guess
what the right keyword should be.

However, we do not directly repair and run the code, so learners will have

35



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofto type the code manually, and learn the right syntax. In this situation, we

also show the Hedy light bulb that can be used to show the correct code in
a modal popup.

We decided to show the code in such a modal popup, rather than in the
coding field, so learners deliberately copy the code and not just click the
repair icon and then run the code immediately.

Figure 17: A program on the left that starts with a space will execute, but also give a
warning.

Figure 18: When users click the light Bulb Icon, they are presented with the correct code.
They will have to enter the correct code themselves.

7.6. Pause in Repetitions

Once we started to teach repetitions in Level 7, we realized that it is not
informative to output the results of a repetition at once. The execution of

36



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofPython (and other programming languages) is typically so quick that code

that repeatedly prints something looks like it is executed instantaneously.
For example, the following code snippet:

for i in range(5):

print(i)

This will print 0 to 4 on the screen, seemingly in one go. We found that
for novice learners, this does not stress the fact that this code repeatedly
executes the second line. We have therefore added a little pause in the
execution of each iteration of the loop. While this is a small change, it is an
interesting one, since it is enabled by the fact that Hedy is a language and
platform for learners. In a language meant for professionals, obviously one
would never want to intentionally slow down code execution.

8. Discussion

8.1. Study Limitations

This study suffers from a number of limitations. Firstly, the sample
contains just two classes within one school in one country. In the future,
we plan to run larger and more diverse studies. Secondly, due to Covid-19,
the lessons were conducted online. This has of course impacted the ability
of the authors to explain Hedy, to help individual learners and to observe
programming behaviour. While we recorded videos of learner screens and
used written surveys to collect opinions, a physical lesson series might have
led to less confusion and richer observation data. A more recent paper on
Hedy was able to collect student opinions in real life and confirmed some of
our findings on Hedy’s ease of use [35].

8.2. Gradual Languages and Learning Trajectories

While Hedy is an implementation of a gradual language, the order in
which the Hedy platform presents concepts is also a form of a learning tra-
jectory, and the levels are (deliberately) combined with a series of levels, and
assignments of increasing difficulty.

It is interesting to consider whether Hedy could exist without accompa-
nying assignments. Would it be valuable to have a ‘bare-bones’ version of
Hedy in which the teacher could insert all lessons themselves? What guides

37



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofthe level progression if there are no exercises or advised structure, and thus

would the gradual approach also add enough value in such a case?
Furthermore it would be interesting to reflect on the order of the concepts.

Can the gradual approach be adapted such that teachers, or maybe even
learners, make their own trajectories? While it might be hard to merge the
grammars in a different order on the fly that should not be a reason to not
explore the potential value.

8.3. Learning to Program is Hard

Despite Hedy’s small steps, simple syntax and extensive explanation, 12
participants in our study still express that they find learning to program
hard. In addition to the participants indicating issues with syntax and with
remembering code, there was one more participant who suggested to make
Hedy ‘easier’ as the biggest potential improvement, without specifying more
detailed issues.

From the lesson observations, we know that some of the issues that these
participants describe could be improved by addressing some of the challenges
described earlier in the paper, such as more intermediate levels, explicit error
messages and localized keywords. Some issues however are of a more con-
ceptual nature. Learning the principles of programming is hard, and some
confusion and frustration cannot be avoided. For example, some children in
our study showed well-known programming misconceptions, such as assum-
ing that a computer is ‘smart’ and can thus fix syntax problems, or can guess
the intention of a programmer, saying things like “why can’t Hedy guess that
I meant to include a print code there?”

8.4. Use of Multiple Correct Syntactic Forms

The fact that many learners in our study found Hedy too strict points
in an interesting direction for future development. In most programming
languages, there is one correct way to format a command, while other ways
are not allowed. There are some exceptions, for example Python allows both
single and double quotes around strings. Python however allows that with
the aim of make escaping characters a bit less cumbersome, not with the goal
of being a lenient language.

A gradual language however could allow multiple versions of syntax, espe-
cially at lower levels, where its grammars will have a small set of production
rules. Hedy for example, could allow for strings with and without quotes at
Level 3, which is the level where quotes are first introduced. Gradually, this

38



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofcould be replaced by allowing strings without quotes but giving a warning to

not allowing it at higher levels. This way novices can get used to the syntax
and learn it, without being frustrated by errors.

8.5. Better Alignment with Operators in Mathematics education

In Level 6, Hedy introduces calculations, e.g. this code is valid Hedy
Level 6 code: print '5 times 5 is '5 * 5. The creators of Hedy decided
to use the standard programming syntax: * for multiplication and / for
division. In these lessons, we realized that might be too far removed from
what children aged 11 to 14 are used to. When we introduced the syntax
for calculations, several children expressed surprise that × or x were not
used for multiplication. From their perspective of course, this is a reasonable
request, if × is used for multiplication in mathematics class, and even on
calculators, why wouldn’t programming languages use it, or use the letter x,
clearly the most similar thing on the keyboard? Similarly, the participants
were expecting :7 or ÷ for division.

Clearly there are sensible reasons that these symbols are not used in
traditional programming languages; × is not present on most keyboards and
using a letter like x as an operator can lead to parsing issues. However,
for an educational language like Hedy, it could be reasonable to use these
less confusing characters. Later levels could introduce the proper Python
operators, and we could even consider to allow both × and x for a few levels,
as proposed in Section 8.4, before mandating only * and /.

8.6. Focus on Memorization

Some participants in our study specifically name the memorization of
commands as hard. This is especially interesting since the Hedy user inter-
face contains a palette in which the new commands of the level are shown.
While we saw learners use the buttons initially, when engaged in an exercise,
the learners often stopped using the buttons and struggled to recall the pre-
cise way to create certain commands. Future gradual programming languages
and lessons plans using gradual languages could consider mixing program-
ming exercises with specific exercises aimed at strengthening memory, such
as retrieval practice, before moving on to new concepts.

7: is commonly used in Dutch schools for division

39



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of8.7. Localized Productions and Gradual Delocalization

Some of the newly introduced features also lead to new discussion points.
For example, while we support localized keywords, this does not entirely
address the problem of a localized language.

Two large open problems remain. Firstly, truly localizing a language
entails more than just keywords. For example, in some languages, produc-
tions need to be overridden to change the order of words in programming
constructs. For example, in Dutch, word order in condition is different; in-
stead of subject verb object “if number is 5”) Dutch uses subject object verb
“[if] number 5 is”. This does not fit the traditional form of conditions in
programming languages. In other cases, we do not need to reorder, but radi-
cally change productions, for example, Arabic does not have a verb for “are”
and hence needs a different grammatical structure for assignment since “x
is 5” as Hedy Level 2 introduces, does not have a clear translation. Finally,
there are various internationalized versions of characters like quotes, French
traditionally uses <<, while Arabic has its own version of the comma and
the double quote.

A second issue is the gradual ‘delocalization’ of the grammars. If we
allow learners to use keywords in their own language, and our goal is also
to have them use a subset of a professional language like Python at the end
of the level trajectory, we need to disallow the use of localized keywords at
a certain level. This brings interesting didactic challenges: do we delocalize
all keywords at once, at the end of the trajectory, in Hedy’s case in or after
Level 18? Or do we teach a keyword localized first, i.e. imprimir for print
in Spanish, and then in English, before we move on to a new keyword?

8.8. Differences in Levels in the Classroom

As explained in Section 6.1.3, some children moved through the levels
quicker than others. It was not always clear to us what drove those differ-
ences. Was that a genuine difference in ability? Or were some children more
confident and thus willing to continue to a higher level, while others might
have lower self-efficacy and thus felt the desire to practice more. It might be
useful to include an adaptive leveling system in Hedy that could both mo-
tivate some children to continue to a higher level while also putting a brake
on children that skip several levels and then get confronted with too many
error messages.

40



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of8.9. Program Repair

While we offer a crude form of program repair that can remove spaces
or suggest a corrected keyword, there are a lot more avenues to explore for
program repair. For example, random textual edits like inserting quotes
or replacing words by legal keywords might reach valid programs quickly.
These edits could be gathered from the history of edits that learners have
made in the past. It could also be feasible to create a small set of canonical
programs at each level, and rather than suggesting an edit to an erroneous
program, suggest a working program with similar features for the learner to
adapt to their own use case. Program repair in Hedy stands at an interesting
intersection between technical and instructional challenges. Because suppose
a buggy program could be correctly repaired, should we present that to the
user directly? Or should we show only the edit? Should we maybe reveal
the correct program gradually (first the edit, and if that does not work, the
full program). How certain should we be that the program is indeed correct
before we show it to the user at all, and how can we be sure? These are all
interesting open questions to explore.

9. Concluding remarks

Gradual programming is an innovative approach for teaching program-
ming, which starts with a simple syntax and gradually adds both concepts
and more complex syntax.

The goal of this paper is twofold. Firstly, it describes the gradual pro-
gramming language Hedy in depth, including its design and implementation
using gradual grammars. Furthermore, in order to understand the benefits
and challenges of the gradual programming language approach, and explore
how it can be further improved, we taught 39 children aged 11 to 14 for six
weeks using Hedy. This study helped us to answer these research questions:

RQ1 What are benefits of a gradual programming approach?

RQ2 What are challenges of a gradual programming approach?

RQ3 How can gradual programming approaches such as Hedy be improved?

Our findings show that children appreciate the gradual nature of Hedy,
especially the control they have over the difficulty of Hedy. They also like and
use the built-in education features like example code snippets (RQ1). Chal-
lenges of a gradual approach are the fact that commands sometimes change.

41



Journal Pre-proof

e?fromstatweb
Jo
ur

na
l P

re
-p

ro
ofWe also find that despite the small steps of Hedy, remembering commands

and specific syntax remain a challenge for learners (RQ2). According to the
participants, improvements could be made by making Hedy less sensitive to
syntax errors, by improving error messages and by localizing keywords to the
native language of children (RQ3).

The current research gives rise to a number of future directions. Firstly,
Hedy can be improved with the lessons we learned from the current study.
Secondly, the current version of Hedy consists of 18 levels, while this study
only studies the first levels. Hence, a replication of this user study on a larger
number of levels can give us valuable insights into the working of Hedy over
a longer period of time, covering more concepts.

Secondly, not all Python features are currently present in the learning
trajectory, most notable, functions are not explained. Designing a more
advanced learner path which also incorporates functions, and maybe even
classes and methods, might be a valuable path for further Hedy development,
enabling the use of Hedy not just in middle school but also in high-schools
or universities.

References

[1] T. Beaubouef, J. Mason, Why the High Attrition Rate for Computer Sci-
ence Students: Some Thoughts and Observations, SIGCSE Bull. 37 (2)
(2005) 103–106. doi:10.1145/1083431.1083474.
URL http://doi.acm.org/10.1145/1083431.1083474

[2] C. B. voor de Statistiek Nederland, StatLine - WO voltijd; rendement
en uitval, 1995 - 2005.
URL https://opendata.cbs.nl/statline//CBS/nl/dataset/71063ned/tabl

[3] A. Luxton-Reilly, Learning to Program is Easy, in: Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Sci-
ence Education, ITiCSE ’16, ACM, New York, NY, USA, 2016, pp.
284–289, event-place: Arequipa, Peru. doi:10.1145/2899415.2899432.
URL http://doi.acm.org/10.1145/2899415.2899432

[4] I. T. C. Mow, Issues and Difficulties in Teaching Novice Computer
Programming, in: Innovative Techniques in Instruction Technology, E-
learning, E-assessment, and Education, 2008.

42



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[5] F. Hermans, Hedy: A Gradual Language for Programming Education,

in: Proceedings of the 2020 ACM Conference on International Com-
puting Education Research, ICER ’20, Association for Computing Ma-
chinery, New York, NY, USA, 2020, pp. 259–270, event-place: Virtual
Event, New Zealand. doi:10.1145/3372782.3406262.
URL https://doi.org/10.1145/3372782.3406262

[6] V. Braun, V. Clarke, Reflecting on reflexive thematic
analysis, Qualitative Research in Sport, Exercise and
Health 11 (4) (2019) 589–597, publisher: Routledge
eprint: https://doi.org/10.1080/2159676X.2019.1628806.
doi:10.1080/2159676X.2019.1628806.
URL https://doi.org/10.1080/2159676X.2019.1628806

[7] M. Gilsing, F. Hermans, Gradual Programming in Hedy: A First
User Study, in: 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2021, pp. 1–9, iSSN: 1943-6106.
doi:10.1109/VL/HCC51201.2021.9576236.

[8] P. Denny, A. Luxton-Reilly, E. Tempero, J. Hendrickx, Under-
standing the syntax barrier for novices, ACM, 2011, pp. 208–212.
doi:10.1145/1999747.1999807.
URL http://dl.acm.org/citation.cfm?id=1999747.1999807

[9] A. Altadmri, N. Brown, 37 Million Compilations: Investigating Novice
Programming Mistakes in Large-Scale Student Data, SIGCSE 2015 -
Proceedings of the 46th ACM Technical Symposium on Computer Sci-
ence Education (2015) 522–527doi:10.1145/2676723.2677258.

[10] A. Stefik, S. Siebert, An Empirical Investigation into Programming
Language Syntax, Trans. Comput. Educ. 13 (4) (2013) 19:1–19:40.
doi:10.1145/2534973.
URL http://doi.acm.org/10.1145/2534973

[11] M. Piteira, C. Costa, Learning Computer Programming: Study of Dif-
ficulties in Learning Programming, in: Proceedings of the 2013 In-
ternational Conference on Information Systems and Design of Com-
munication, ISDOC ’13, Association for Computing Machinery, New
York, NY, USA, 2013, pp. 75–80, event-place: Lisboa, Portugal.

43



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofdoi:10.1145/2503859.2503871.

URL https://doi.org/10.1145/2503859.2503871

[12] U. Müller, J. I. M. Carpendale, L. Smith, The Cambridge Compan-
ion to Piaget, Cambridge University Press, 2009, google-Books-ID:
IGggAwAAQBAJ.

[13] A. Demetriou, M. Shayer, A. Efklides, Neo-Piagetian Theories of Cogni-
tive Development: Implications and Applications for Education, Rout-
ledge, 2016, google-Books-ID: IZSkDAAAQBAJ.

[14] R. Case, Neo-Piagetian theories of child development, in: Intellectual
development, Cambridge University Press, New York, NY, US, 1992,
pp. 161–196.

[15] R. Lister, Toward a Developmental Epistemology of Computer Program-
ming, in: Proceedings of the 11th Workshop in Primary and Secondary
Computing Education, WiPSCE ’16, Association for Computing Ma-
chinery, New York, NY, USA, 2016, pp. 5–16, event-place: Münster,
Germany. doi:10.1145/2978249.2978251.
URL https://doi.org/10.1145/2978249.2978251

[16] S. R. Portnoff, The introductory computer programming course is first
and foremost a language course, ACM Inroads 9 (2) (2018) 34–52.
doi:10.1145/3152433.
URL https://doi.org/10.1145/3152433

[17] F. Hermans, M. Aldewereld, Programming is writing is programming,
in: Companion to the first International Conference on the Art, Science
and Engineering of Programming, 2017, pp. 1–8.

[18] P. Brusilovsky, , Others, Teaching Programming to Novices: A Review
of Approaches and Tools (1994).
URL https://eric.ed.gov/?id=ED388228

[19] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic
Books, Inc., New York, NY, USA, 1980.

[20] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai,
Scratch: Programming for All, Commun. ACM 52 (11) (2009) 60–67.

44



Journal Pre-proof

082
Jo
ur

na
l P

re
-p

ro
ofdoi:10.1145/1592761.1592779.

URL http://doi.acm.org/10.1145/1592761.1592779

[21] B. W. Becker, Teaching CS1 with karel the robot in Java, in: SIGCSE
’01, 2001. doi:10.1145/364447.364536.

[22] P. Brusilovsky, E. Calabrese, J. Hvorecký, A. Kouchnirenko, P. Miller,
Mini-languages: A way to learn programming principles, Education and
Information Technologies 2 (1997) 65–83. doi:10.1023/A:1018636507883.

[23] B. Heeren, D. Leijen, A. van IJzendoorn, Helium, for Learning
Haskell, in: Proceedings of the 2003 ACM SIGPLAN Workshop
on Haskell, Haskell ’03, Association for Computing Machinery, New
York, NY, USA, 2003, pp. 62–71, event-place: Uppsala, Sweden.
doi:10.1145/871895.871902.
URL https://doi.org/10.1145/871895.871902

[24] E. Roberts, An Overview of MiniJava, in: Proceedings of the Thirty-
Second SIGCSE Technical Symposium on Computer Science Educa-
tion, SIGCSE ’01, Association for Computing Machinery, New York,
NY, USA, 2001, pp. 1–5, event-place: Charlotte, North Carolina, USA.
doi:10.1145/364447.364525.
URL https://doi.org/10.1145/364447.364525

[25] K. E. Gray, M. Flatt, ProfessorJ: A Gradual Introduction to Java
through Language Levels, in: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’03, Association for Computing Ma-
chinery, New York, NY, USA, 2003, pp. 170–177, event-place: Anaheim,
CA, USA. doi:10.1145/949344.949394.
URL https://doi.org/10.1145/949344.949394

[26] B. Shneiderman, Teaching programming: A spiral approach to syn-
tax and semantics, Computers & Education 1 (4) (1977) 193–197.
doi:10.1016/0360-1315(77)90008-2.
URL http://www.sciencedirect.com/science/article/pii/0360131577900

[27] R. C. Holt, D. B. Wortman, D. T. Barnard, J. R. Cordy, SP/k: a system
for teaching computer programming, Commun. ACM 20 (1977) 301–309.
doi:10.1145/359581.359586.

45



Journal Pre-proof

208

cket.pdf
Jo
ur

na
l P

re
-p

ro
of[28] T. Balman, Computer assisted teaching of FORTRAN, Computers &

Education 5 (2) (1981) 111–123. doi:10.1016/0360-1315(81)90020-8.
URL http://www.sciencedirect.com/science/article/pii/0360131581900

[29] J. W. Atwood, E. Regener, Teaching Subsets of Pascal, SIGCSE Bull.
13 (1) (1981) 96–103. doi:10.1145/953049.800969.
URL https://doi.org/10.1145/953049.800969

[30] I. Tomek, T. Muldner, S. Khan, PMS—A program to make learn-
ing Pascal easier, Computers & Education 9 (4) (1985) 205–211.
doi:10.1016/0360-1315(85)90009-0.

[31] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, The DrScheme
project: an overview, ACM SIGPLAN Notices 33 (6) (1998) 17–23.
doi:10.1145/284563.284566.
URL https://doi.org/10.1145/284563.284566

[32] R. Findler, DrRacket (1996).
URL https://plt.cs.northwestern.edu/snapshots/current/pdf-doc/drra

[33] W. Cazzola, D. M. Olivares, Gradually Learning Programming
Supported by a Growable Programming Language, IEEE Trans-
actions on Emerging Topics in Computing 4 (3) (2016) 404–415.
doi:10.1109/TETC.2015.2446192.

[34] C. Vega, C. Jiménez, J. Villalobos, A scalable and incremental project-
based learning approach for CS1/CS2 courses, Education and Informa-
tion Technologies 18 (2) (2013) 309–329. doi:10.1007/s10639-012-9242-8.
URL https://doi.org/10.1007/s10639-012-9242-8

[35] Yeni, Sabiha, van der Meulen, Anna, Students’ Behavioral Intention to
Use Gradual Programming Language Hedy, in: Proceedings of the 27th
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’22), Proceedings of ITiCSE, 2022, pp. –, to Appear.

[36] E. Tshukudu, Q. Cutts, Semantic Transfer in Programming Languages:
Exploratory Study of Relative Novices, in: Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE ’20, Association for Computing Machinery, Trondheim,
Norway, 2020, pp. 307–313. doi:10.1145/3341525.3387406.
URL https://doi.org/10.1145/3341525.3387406

46



Journal Pre-proof

exploration-into-the-vocalization-of-code
Jo
ur

na
l P

re
-p

ro
of[37] F. Hermans, A. Swidan, E. Aivaloglou, Code Phonology: An exploration

into the vocalization of code, in: Proceedings of the 26th Conference
on Program Comprehension, ICPC 2018, Association for Computing
Machinery (ACM), 2018, pp. 308–311. doi:10.1145/3196321.3196355.
URL https://research.tudelft.nl/en/publications/code-phonology-an-

[38] J. S. Brown, A. Collins, P. Duguid, Situated Cognition and the
Culture of Learning, Educational Researcher 18 (1) (1989) 32–42.
doi:10.3102/0013189X018001032.
URL https://doi.org/10.3102/0013189X018001032

[39] A. Stefik, R. Ladner, The Quorum Programming Language (Abstract
Only), in: Proceedings of the 2017 ACM SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’17, ACM, New York,
NY, USA, 2017, pp. 641–641, event-place: Seattle, Washington, USA.
doi:10.1145/3017680.3022377.
URL http://doi.acm.org/10.1145/3017680.3022377

[40] T. Kohn, Teaching Python Programming to Novices: Addressing Mis-
conceptions and Creating a Development Environment, PhD Thesis,
ETH Zurich (2017).

[41] D. Wolber, H. Abelson, M. Friedman, Democratizing Computing with
App Inventor, GetMobile: Mobile Computing and Communications
18 (4) (2015) 53–58. doi:10.1145/2721914.2721935.
URL https://doi.org/10.1145/2721914.2721935

[42] S. C. Pokress, J. J. D. Veiga, MIT App Inventor: Enabling Personal
Mobile Computing, arXiv:1310.2830 [cs]ArXiv: 1310.2830 (Oct. 2013).
URL http://arxiv.org/abs/1310.2830

[43] M. Ball, J. Mönig, B. Romagosa, B. Harvey, Snap! A Look at 5 Years,
250,000 Users and 2 Million Projects, in: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, SIGCSE ’19,
Association for Computing Machinery, New York, NY, USA, 2019, p.
1279. doi:10.1145/3287324.3293863.
URL https://doi.org/10.1145/3287324.3293863

[44] F. Paas, J. J. G. van Merriënboer, Cognitive-Load Theory: Methods
to Manage Working Memory Load in the Learning of Complex Tasks,

47



Journal Pre-proof

puting-education-research/cognitive-sciences-for-computing-education/319D706EF1A2E8D6A6B8EA7697CE5BE2

ing-code-aloud-on-comprehension-an-empirical-st
Jo
ur

na
l P

re
-p

ro
ofCurrent Directions in Psychological Science 29 (4) (2020) 394–398, pub-

lisher: SAGE Publications Inc. doi:10.1177/0963721420922183.
URL https://doi.org/10.1177/0963721420922183

[45] D. Weintrop, U. Wilensky, To block or not to block, that is the question:
students’ perceptions of blocks-based programming, in: Proceedings of
the 14th International Conference on Interaction Design and Children,
IDC ’15, Association for Computing Machinery, New York, NY, USA,
2015, pp. 199–208. doi:10.1145/2771839.2771860.
URL https://doi.org/10.1145/2771839.2771860

[46] A. V. Robins, L. E. Margulieux, B. B. Morrison, Cognitive Sciences
for Computing Education, in: A. V. Robins, S. A. Fincher (Eds.), The
Cambridge Handbook of Computing Education Research, Cambridge
Handbooks in Psychology, Cambridge University Press, Cambridge,
2019, pp. 231–275. doi:10.1017/9781108654555.010.
URL https://www.cambridge.org/core/books/cambridge-handbook-of-com

[47] F. Hermans, The Programmer’s Brain: What every programmer needs
to know about cognition, Manning Publications, S.l., 2021.

[48] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill,
C. Parnin, Do Developers Read Compiler Error Messages?, in: Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE ’17, IEEE Press, 2017, pp. 575–585, event-place: Buenos Aires,
Argentina. doi:10.1109/ICSE.2017.59.
URL https://doi.org/10.1109/ICSE.2017.59

[49] B. A. Becker, P. Denny, J. Prather, R. Pettit, R. Nix, C. Mooney, To-
wards Assessing the Readability of Programming Error Messages, in:
Australasian Computing Education Conference, Association for Com-
puting Machinery, New York, NY, USA, 2021, pp. 181–188.
URL https://doi.org/10.1145/3441636.3442320

[50] A. Swidan, F. Hermans, The Effect of Reading Code Aloud on Compre-
hension: An Empirical Study with School Students, in: CompEd’19 :
Proceedings of the ACM Conference on Global Computing Education,
Association for Computing Machinery (ACM), 2019, pp. 178–184.
doi:10.1145/3300115.3309504.
URL https://research.tudelft.nl/en/publications/the-effect-of-read

48



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[51] S. Dasgupta, B. M. Hill, Learning to Code in Localized Programming

Languages, in: Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale, L@S ’17, Association for Computing Machinery, New
York, NY, USA, 2017, pp. 33–39. doi:10.1145/3051457.3051464.
URL https://doi.org/10.1145/3051457.3051464

[52] C. Le Goues, T. Nguyen, S. Forrest, W. Weimer, GenProg: A Generic
Method for Automatic Software Repair, IEEE Transactions on Software
Engineering 38 (1) (2012) 54–72. doi:10.1109/TSE.2011.104.

[53] C. Le Goues, M. Dewey-Vogt, S. Forrest, W. Weimer, A sys-
tematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each, in: 2012 34th International Conference
on Software Engineering (ICSE), 2012, pp. 3–13, iSSN: 0270-5257.
doi:10.1109/ICSE.2012.6227211.

[54] C. L. Goues, M. Pradel, A. Roychoudhury, Automated pro-
gram repair, Communications of the ACM 62 (12) (2019) 56–65.
doi:10.1145/3318162.
URL https://doi.org/10.1145/3318162

49



Journal Pre-proof

Title Page ( with author details )
Jo
ur

na
l P

re
-p

ro
of

 
 
Title 
Design, Implementation and Evaluation of the Hedy 
Programming Language 

 
 
Authors 
Marleen Gilsinga, Jesús Pelayb, Felienne Hermansa,c 
 

a. Leiden University, Leiden, The Netherlands 
b. Universidad de Carabobo, Carabobo, Venezuela 
c. Vrije Universiteit, Amsterdam, The Netherlands 

 
 
Corresponding author 
Felienne Hermans – LIACS office 104 
Niels Bohrweg 1 
2333 CS Leiden, the Netherlands 
 
 
Financial Disclosure: 
None reported 
 
Conflict of Interest: 
None reported 
 



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTitle

Design, Implementation and Evaluation of the Hedy
Programming Language

Authors
Marleen Gilsinga, Jesús Pelayb, Felienne Hermansa,c

a. Leiden University, Leiden, The Netherlands
b. Universidad de Carabobo, Carabobo, Venezuela
c. Vrije Universiteit, Amsterdam, The Netherlands

CRediT author statement

Marleen Gilsing: Investigation, Data Curation, Writing - Review & Editing
Jesús Pelay: Software, Writing - Review & Editing
Felienne Hermans: Conceptualization, Methodology, Software, Resources, Writing - 
Original Draft, Writing - Review & Editing, Funding acquisition



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaration of interests
 

 The authors declare that they have no known competng fnancial interests or personal relatonships ☒
that could have appeared to influence the work reported in this paper.
 

 The authors declare the following fnancial interests/personal relatonships which may be considered ☐
as potental competng interests:

 
 
 


	Design, implementation and evaluation of the Hedy programming language
	CRediT authorship contribution statement


