Opleiding Informatica

/&>

Universiteit

Leiden
The Netherlands

5
I
B
=
2
2l

() = &)
P
Gy gt

dsst

An interactive program visualisation tool for Hedy

Ali Esat Ozbay

Supervisor:
Dr.ir. F.F.J. Hermans

BACHELOR THESIS
Leiden Institute of Advanced Computer Science (LIACS)
23/6,/2022

www.liacs.leidenuniv.nl

Abstract

Hedy is a gradual programming language for young students, with an approach that makes learning syntax easy.
Although this addresses some of the challenges in learning to code, others remain. Misconceptions in particular form
a significant obstacle in a student’s conceptual understanding. In a study with primary school students, We have
investigated the extent to which a game-like interactive program visualisation tool can help resolve misconceptions.
We found both promise and indications of the limits of such a tool, and implications for a fruitful avenue for Hedy
to improve as a learning system.

Contents

1

2

Introduction

Background and Motivation

2.1 Gradual L e
2.2 Programming knowledge and misconceptions L oo
2.3 Mental models
2.4 Program visualisation
25 Aimofthestudy e
Related Work
3.1 Lack of engagement and learning principles L oL oo
3.2 Other tools e
Design
4.1 Active Participation e e
4.1.1 Lower Cognitive Load
4.1.2 Hunting For the Next Element e
4.1.3 Activity-goal Association L.
4.1.4 Integration into Hedy e
4.2 Explicit Code-Metaphor Connection e
4.3 Metaphor-Misconception Incompatibility o oL
4.4 Incorporate What Children Find Motivating 0.,
Implementation
5.1 Elements of the Tool
5.1.1 Print Window L oL e
5.1.2 Avatar . ..o L
5.2 How it works o .
Method
Participants

The course of the experiment

Results
9.1 Test SCores
9.2 QUESHIONS e e
9.3 Misconceptionsol e e e e e
9.3.1 Test Question 1. o L L L
0.3.2 Test Question 2. L. e e
0.3.3 Test Question 3. oL e
9.4 Comparing Hedy and the tool
9.5 Categories e
9.6 Highest and lowest rated statements L L L

10 Discussion

10.1 Improved Test Scores o 0 e e e
10.2 Effects of type of misconceptions on scores
10.3 Mismatch Between Score and Attitude Lo
10.4 Possible Causes of Lack of Improvement L
10.5 Extent of Resolving Misconceptions 0 o e
10.6 Reception o . o 0 e e e
10.7 Future Work o Lo e

=~ NN N NN R

U Ot Ot Ot Ot Ut

NeJENoREN I =N

10

10.8 Limitations
10.9 Implications

References

1 Introduction

It may surprise the reader how young some children are
today when they start to learn programming. In some
elementary schools children are as young as 10 years old
when they encounter programming in the classroom/[6].

One reason for this is new attention given to our in-
creasingly digital society. Policymakers all over the world
attempt to meet new demands by integrating computer
science into education curriculum[4].

A second reason is that programming education has
evolved to the point that learning to program has never
been so easy or accessible for young people. Initiatives like
Scratch have reached a staggering number of children and
inspired them to make creations of their own[3]. These
initiatives make it possible to introduce programming so
early in the classroom.

Hedy is such an initiative, an open-source gradual pro-
gramming language that makes it easier of children to
learn to code[l]. It’s available for anyone to use online,
and currently undergoes active development. Learning
to code presents many challenges. One such challenge
is needing to remember a lot of detailed rules right at
the start. This is especially difficult for children. Hedy
removes the need to remember detailed rules at first, so
that learners can write simplified but meaningful code
right from the start. It then gradually builds up the level
of detail in so called levels, until children can finally write
Python code in the last level.

Another challenge are misconceptions. Misconceptions
are errors in conceptual knowledge. Conceptual knowl-
edge is about knowing how programming concepts work
and ”what happens inside the computer”[5]. The current
study presents an interactive program visualisation tool
to help resolve such misconceptions, Hedy’s first. We have
investigated how effective the tool is in a study with eight
Dutch primary school students familiar with Hedy. In
doing so, we sought to answer the question: “To what
extent can an interactive program visualisation tool help
to resolve multiple variable assignment misconceptions in
young users of Hedy for level 2 example code?”

We have found that the tool we developed can be both
an effective and welcomed way to resolve misconceptions.
The presented tool is a significant first step in address-
ing misconceptions for Hedy, and points to a promising
direction towards making Hedy a more complete learning
system.

2 Background and Motivation
Hedy [1] is a gradual programming language meant to

teach young students how to program. It’s available for
anyone on the internet, and it is actively being developed

by people from all over the world. New features are fre-
quently added, and it’s already been translated to many
languages by international volunteers. In fact, anyone
can contribute to the project because it’s open-source.
Besides being freely available online, Hedy is also taught
in some primary schools, and it’s growing more popular.

2.1 Gradual

Where other programming languages give learners access
to all its features right from the start, Hedy takes a
gradual approach. Hedy only introduces one or two new
ideas at a time, sectioned into what are called levels. For
example, in level one learners learn the print command,
which they can use to make message appear on the screen.
However, in level two they can also save their messages
in variables. Instead of having to type the whole message
into the print command, they can write the message into
a variable. Then, learners only have to type the variable’s
name into the print command.

Learning to program is hard, so Hedy hides unnecessary,
complex details early on to make it easier. These are
syntax details, the rules on how code should be written, so
we say that Hedy defers syntactic complexity. For example,
learners do not need to put quotation marks around their
messages in level one, but this becomes required starting
in level four. Hedy continues to introduce new ideas that
start out simple, and get more detailed later on, until it’s
actually a subset of the popular language Python.

By deferring syntactic complexity, Hedy can show learn-
ers abstract concepts early. By the time that Hedy intro-
duces random lists as early as level three, a learner of a
traditional language may still be trying to remember the
rules on how to print a simple message. This lets Hedy
learners make interesting programs right from the start.
For example, random lists can be used to make programs
that tell a different story every time it is run.

2.2 Programming knowledge and miscon-
ceptions

At the same time, learning about abstract concepts opens
the door to misconceptions. Programming requires differ-
ent kinds of knowledge. We have seen syntactical knowl-
edge, that is the rules of how programs should be writ-
ten. Then there is conceptual knowledge, which Qian
and Lehman define as knowing “how programming con-
structs and principles work, and what happens inside
the computer”[5]. For example, knowing what happens
when you assign a value to a variable, or why quotation
marks are needed around strings, i.e. messages. When a
learner has a mistake in their conceptual understanding,
we call this a misconception. For example, a learner may
mistakenly believe that variables remember all the values

that they assigned to it, when it is actually the case that
variables can only hold one value at a time.

It is said that syntax mistakes are easily corrected,
since they are easily identified. [paper that says this says:]
That is, they do not usually pose a significant obstacle
in learning to program, though this may not be true for
younger learners[1]. Whatever the case, it is hard to deny
that syntax errors are easily identified; a program contain-
ing a syntax error will simply complain. Misconceptions,
however, are a more subtle obstacle. They are established
early, and are not easily identified since they reside inside
a learner’s mind. Finally, they are difficult to change once
established.

Both syntax and conceptual knowledge are needed to
develop strategic knowledge. Strategic knowledge means
knowing how to combine syntax and conceptual knowl-
edge to write programs that solve problems that learners
haven’t encountered before. This is arguably the most
exciting kind of knowledge for learners, since it can be
applied to make all kinds of new, meaningful programs.
Since misconceptions hamper conceptual knowledge, re-
solving them paves the way for strategic knowledge.

2.3 Mental models

Misconceptions are connected to mental models. A mental
model here means knowing step by step what happens
inside the computer when a program is run. Experienced
programmers can often mentally execute code and pro-
duce the same output as when a computer were to run
it. These programmer do not simulate the actual transis-
tors nor calculate the zeroes and ones that a computer
uses to produce the output. Instead, they rely on their
mental model of a national machine. This is an abstract
machine that can execute code in general terms, so not
specific to a particular programming language, which
can be understood by humans and used to reason about
programs.

2.4 Program visualisation

Researchers have tried to resolve learners’ misconceptions
and improve their mental models, by visualising notional
machines with interactive program visualisation tools.
These visualisations often use metaphors to connect pro-
gramming concepts to things that learners are already
familiar with, like representing variables with labels.

2.5 Aim of the study

In short, Hedy learners could benefit from such visuali-
sation tools to resolve misconceptions and improve their
mental models. However, no such tool currently exists
for Hedy code. Since Hedy introduces the concept of vari-
ables as early as level two, it is possible to write multiple

variables assignments in the same program early on. This
is conceptually quite complicated, and may thus lead to
all sorts of misconceptions from the onset. It is the aim
of the current study to help learners resolve such variable
misconceptions by creating an interactive program visu-
alisation tool for Hedy. The usefulness of such a tool for
Hedy code remains to be seen, so we have arrived at our
research question.

To what extent can an interactive program visuali-
sation tool help to resolve multiple variable assignment
misconceptions in young users of Hedy for level 2 example
code?

3 Related Work

To build a program visualisation tool for Hedy that is
effective, it is imperative to look at other such tools and
their approaches. An understanding of previous work,
allows us to identify potential pitfalls and apply lessons
learned, and may be a source of inspiration for our tool.

3.1 Lack of engagement and learning prin-
ciples

First, it is important to gain an overview of the field.
In their 2013 review of programming visualisation tools,
Sorva et al. propose a framework for the engagement
of visualisation tools, as makers of these tools regard
engagement as what makes a visualisation effective [8].
Here, engagement is the extent to which a user is engaged
and able to interact with the visualisation, and the extent
to which the user can control and change the program to
be visualised.

Though Sorva et al. conclude that program visualisa-
tions have a positive effect on learning, they find insuffi-
cient evidence to conclude what exactly makes a program
visualisation more effective than others. They note that
most studied tools only have low levels of engagement,
which makes it impossible to compare the relative effect
of engagement.

So it is thought that engagement makes a visualisation
better, yet there are not enough tools in the literature
that are engaging enough to support this claim. In their
2016 Hidalgo-Céspedes et al. looked at recent program
visualisations and invegtigated how they incorporated
learning princip Looking at sixteen learning
principles based omVygotsky theory of learning, they
found support for only two of them, and almost no sup-
port for the rest. This means only two principles were
consistently incorporated in recent program visualisation
tools. In fact, for eight principles there was no support at
all, meaning that none of the tools they looked at incorpo-
rated these principles. Furthermore, they recommend to

incorporate these principles via gamification and visual
concrete metaphors.

So most existing tools are not fully engaging, nor do
they incorporate learning principles, which may limit
their effectiveness. It is clear then that we must consider
both engagement and learning principles in the design
of our tool. This puts us in a better position to answer
our central question, as we can be more confident that
our tool approaches the extent to which an interactive
program visualisation tool can resolve misconceptions for
Hedy code.

3.2 Other tools

We have looked at the landscape and arrived at two
requirements for our tool: it must be engaging, and it must
incorporate learning principles. As to how this can be
accomplished, we turn to Hidalgo-Céspedes et al.: visual
concrete metaphors and gamification. For inspiration, we
will turn to other programming visualisations utilising
metaphors and gamification.

It may be surprising that good examples of program-
ming visualisations that make use of gamification and
concrete visual metaphors, do not come from the research
community. Instead, these are commercially successful
games presented as puzzle games, that require the user to
program in an assembly-like language. At the same time
these games effectively teach the user to write assembly-
like code. Programming constructs are introduced gradu-
ally; players are given multiple contexts to practice with
the concepts through the use of levels; puzzles are problem-
solving exercises with multiple solutions; narrative devices
and game elements motivate the player to complete levels
and improve their solutions.

Crucially, these games employ a cohesive analogy in
their program visualisation, making use of concrete visual
metaphors. For example, in Human Resource Machine
(Figure 1), the player writes assembly code that a little
office worker then executes. The code state is visualised
inside an office. Values are little tiles that are delivered
and shipped away via conveyor belts, which represent
input and output. The office worker dutifully manipulates
these tiles, putting them on a board on the floor, registers,
and shuffles them around and combines them as stipulated
by the player’s program. The code itself is also visualised,
with the use of arrows showing jump destinations, and
connected to concrete elements inside the office, with
labels inside code having the same concrete appearance
as in the office. Notice how the visual metaphors are
concrete, connected to concepts that players are expected
to already be familiar with, such as conveyor belts, labels,
and tiles that can be picked up and manipulated.

In another game called Exapunks (Figure 2), the player
learns to program concurrent assembly machines, pre-

Learned commands;

Office worker, that
carries out program

\Conveyorbeltifor.
output You got... LABELS! Théy can

Telp you remember

purpose of each tile on the

4 [
Tiles represent
walues)

jumpldestination:

Figure 1: Human Resource Machine

Register states

NERY

Program of XA> /

Figure 2: Exapunks

sented as a hacking puzzle game with a cyberpunk narra-
tive, visualised by little robots that crawl inside a com-
puter network. In contrast to Human Resource Machine,
the world the robots inhabit does not visualise the pro-
gram’s state, but represents a separate world with its own
goals. Code is confined to the memory circuits, and the
robots only visualise code execution in terms of its effect
on the robots.

So programs can be visualised to a greater or lesser
degree, as we see in Exapunks and Human Resource Ma-
chine. Between the two it’s clear that Human Resource
Machine is a better visualisation tool. On the extreme
end of the spectrum, there is Opus Magnum (Figure 3),
where the code and the visualisation are inseparable. The
visualisation encapsulates all information about program
structure, execution and state, and holds even more in-
formation than the code, as the interconnection between
concrete elements influences the simulation. While im-
pressive, any resemblance to actual code is lost, and the
visualisation fails to bridge known notions to program-
ming constructs; it’s no longer a metaphor. Of these three
games, Human Resource Machine strikes the best bal-
ance, visualising programs with metaphors and a cohesive

Visualization

Figure 3: Opus Magnum

Print output (drag lower right corner to resize;

Python 3.6
(known limitations)
def foo():

print(“goodbye") 4

Frames Objects

def bar(baz):
- return baz + 10 function
foo()

Global frame

- foo

x = bar(x) bar
print(x) x |5
foo()

function
bar(baz)

Edit this code

line that just executed
= next line to execute

()
<<First [[Next>] [Last>> |

Step 6 of 12

Figure 4: Pythontutor.com visualising a python program

analogy without losing the connection with the original
code.

Compare these games with pythontutor (Figure 4), a
popular visualisation tool for python learners, and we see
a stark difference. Pythontutor exclusively portrays the
visualisation with abstract metaphors; we see lists and
tables connected via arrows. While the tool is immensely
useful, for the user there are no elements to connect the
visualisation to familiar, concrete ideas, especially for the
young user who has only just started to develop their
abstract reasoning|piaget].

Finally, there is Gidget [cite gidget paper| (Figure 5),
a debugging game from the literature about a defective
computer that requires the help of the player, meant to
teach players programming. Gidget uses gamification to
structure the lessons as missions and narrative to engage
players. Gidget, the main character, is fallible so that

players learn that computers are not all-knowing entities.

Programs may contain mistakes, and the blame is shifted
to Gidget’s limitations rather than those of the players.

We also see concrete metaphors in the world section.

Gidget is a visual character in the world. Gidget has
a personality, just like anyone, and tries to interpret
the code step-by-step. There are grass and brick tiles to
demarcate walkable areas, and the goal tile is visualised
as an animal that Gidget needs to get to.

code

world

o
o

gidget

Abstrach
for State]

©h no! I falled some of my goals so I didn't complete this
mission. Can you help me try again?
stopl ~ Retry

Figure 5: A mission in Gidget

However, the state of code itself is visualised abstractly,
as Gidget’s internal state, see Figure 5 under the right-
hand panel.

So far we have seen five examples of programming visu-
alisation tools, which use gamification and visual concrete
elements to varying degrees. We must be careful not to
visualise too little, nor too much, and ensure that the
visualisation maintains a connection with the code. Gid-
get is an example of how to use gamification to structure
programming lessons in an engaging way, but lacks con-
crete visual metaphors for its code. It seems appropriate
for our study to combine elements from these examples
to increase engagement and adhere to learning principles
where possible, especially through gamification and visual
concrete metaphors.

4 Design

From our exploration of previous work, we have learned of
two key requirements that can make our tool more effec-
tive. We should make our tool engaging, and incorporate
learning principles. In this section, we will outline the core
ideas behind our tool that adhere to these requirements,
especially via gamification and visual concrete metaphors.

4.1 Active Participation

We will first look at the idea making students an active
participant in the visualisation. Most program visualisa-
tions simply carry on by themselves without requiring
input from the user, or are controlled via an interface
similar to a video player or a debugger. To increase en-
gagement with our tool, we will instead require the user to
find the next element of interest inside the visualisation,
similar to a point-and-click puzzle game.

4.1.1 Lower Cognitive Load

The pace of our visualisation will be controlled by the user,
so that only small chunks of information are imparted on

the user at a time. This decreases the likelihood that we
overwhelm the user, i.e. cause cognitive overload, and we
therefore give the user a better chance of really engaging
with the information.

4.1.2 Hunting For the Next Element

By hiding the interactable elements within the visualisa-
tion, we ask to user to engage more directly with it, as
they need to consider the spatial relationships within the
visualisation to successfully find the next element. We
hope that increasing the level of engagement required, by
both challenging the user and by focusing their attention
to the visualisation, makes them more likely to notice
incompatibilities with their own misconceptions.

4.1.3 Activity-goal Association

We wish to more closely associate finding the next ele-
ment with the goal of resolving misconceptions. It’s been
observed that people are more intrinsically motivated to
engage with activities when these activities align with
their goals, i.e. the reward for engaging in the activity
fulfils their goal[9]. Furthermore, this motivation increases
when they are rewarded earlier[9].

Users who want to find the next element, are more
inclined to closely follow the visualisation, as this gives
them the needed clues to find the next element. Simulta-
neously, this attention is rewarded in relation to the goal
of resolving misconceptions, because in closely following
the visualisation, they may be surprised by it and discover
incompatibilities with their own ideas: misconceptions.
Thus, scouring for clues and actively participating in the
visualisation helps them to identify the next element,
which is closely aligned to resolving misconceptions. By
dividing the visualisation into smaller pieces and introduc-
ing more interaction steps, engaging with the visualisation
is rewarded earlier, the student does not need to wait a
long time before applying their observations to finding the
next element. Most of all, we expect that hunting for the
next element is fun, like a mini-game, so paying attention
is also more quickly rewarded with this fun activity.

4.1.4 Integration into Hedy

That players experience heightened engagement from the
activity-goal association presupposes that the user is moti-
vated to resolve misconceptions in the first place. Though
the tool may be fun to use on its own, it’s ultimately
a learning tool, and we expect that higher engagement
makes it more effective at resolving misconceptions. There-
fore, we recommend to take the approach of conceptual
contraposition when integrating the tool into Hedy[2]:
this means to make the learner aware that they hold

a misconceptions, and then immediately offering an al-
ternative explanation. Within Hedy, we envision a task
asking students to predict the output of programs. It is
shown that such tasks by themselves can improve learner’s
understanding[7]. When they make a mistake, they are
made aware of their misconception, and are both more
motivated to resolve it and more open to change their
mental model[2]. This would then be a good time to offer
the tool as a way for them accomplish their goal of re-
solving their misconception. Cues from Gidget may even
be taken, by contextualising the task as a way to help
a fictional character who cannot predict the output of a
program. For instance, special adventures may be inte-
grated into Hedy with a broken “Execute code” button,
accompanied by a character who is in trouble because
they don’t know to execute the code. The student may
be motivated to help this character while also resolving
misconceptions for themselves.

4.2 Explicit Code-Metaphor Connection

Second is the idea of explicitly linking concrete elements
to the code. Inspired by Human Resource Machine, it
is our approach to make the concrete visual elements
originate from the code that they are linked to. We want
to make clear the connection between code and metaphor.

4.3 Metaphor-Misconception Incompati-
bility

Third is the use of concrete visual metaphors that are in-
compatible with misconceptions. Different metaphors are
not equally suited to combat misconceptions. For example,
the box metaphor for variables, that variables are boxes
that you can put values into, does not preclude the miscon-
ception that variables can hold multiple values. The label
metaphor, on the other hand, is incompatible with this
misconception, because a label can only be attached to a
single object. Metaphors should be used that are, as much
as possible, incompatible with common misconceptions.
Ideally, metaphors should interconnect to form a cohesive
analogy, such as the office analogy in Human Resource
Machine. Disconnected, separate metaphors may form
a less compelling and convincing model, and risk being
rejected by the student because they find the visualisation
not intuitive.

4.4 Incorporate What Children Find Mo-
tivating

Last is to reflect what young students find motivating,
with a light-hearted appearance and a fun protagonist.
While pythontutor may be perceived as boring by young
people, Gidget is much likely to be perceived as fun and

Variable

Label Avatar

Rlatform / i

Figure 6: An overview of the tool

engaging, because Gidget’s design is informed by child
psychology. We expect narrative and game elements to
be far more stimulating than abstract lists and arrows,
and we expect an expressive and colourful presentation
to better hold a young person’s attention than a dull,
serious presentation.

5 Implementation

What follows is an outline of the implementation of our
interactive program visualisation tool. It is presented as
a point-and-click game, and it incorporates the design
ideas from chapter 4. It was created with the Unity game
engine and C-sharp, making use of freely available models

from the internet.! 2

5.1 Elements of the Tool

The tool was implemented as a 3D environment, which
consists of 3 main elements: the code window, the platform
and the print window. Additionally, there is an avatar

stood on the platform. An overview is shown in Figure 6.

The goal is to click on the right objects on the scene to
advance the visualisation step by step.
/subsubsectionCode window
The first main element is the window on the left hand
side, in which the Hedy level 2 code appears. It is modelled
after the code editing window from the Hedy website, to

ensure that Hedy users will be familiar with its meaning.

The window is not visible at the start of the game, and
needs to be summoned by clicking on the console in the
lower-right corner of the platform. This is to introduce

1Source code publicly available at https://github.com/
ozbayae/InteractiveHedyMetaphors/

2A playable version is available at https://zsesz.itch.io/
interactivehedymetaphor

Sliding window/to
visualized

t m@
highlightistate]

Figure 7: Code Window at the start of the game

Figure 8: Clicking on pulsating sliding window summons
a new element

the concept that clicking on the right object makes some-
thing happen, before linking this to program visualisation.
The code presented in this summoned window will be
visualised next. The pace of the visualisation is directed
by the player, as they need to find the right object to
click on in between visualisation steps. A small, separate
sliding window moves over the code symbols to indicate
which part of the code is being visualised. Whenever a
code symbol generates a new element for the visualisa-
tion, it magically pops out of the symbol with a puff of
smoke. This reinforces the notion that symbols in code
have different functions, and that students should read
code carefully from left to right, and consider how these
symbols relate to how code works “on the inside”.
/subsubsectionPlatform The second element is the 3D
platform. This 3D space represents the “inside” of the
computer. It features nine tiles, of which six look like
grass and three look like exposed dirt. The three dirt tiles
are a metaphor for variable addresses, associated with a
gardening metaphor. The gardening metaphor connects
to variable declarations, variable references being replaced

Figure 9: Cursor changes to indicate an interactable object
has been found

by their values and assignments. When first declaring a
variable, a wooden sign with the variable’s name on it is
planted in front of an empty patch of dirt. When assigning
this variable a value, represented by a pumpkin with the
corresponding value drawn on it, it is planted with a
shovel in the patch of dirt with the sign that signifies
that variable. If the variable holds an old value, and the
patch of dirt has therefore a old pumpkin plant, the plant
is uprooted and thrown away, reinforcing the idea that
variable assignment replaces the old value.

With the pumpkin planted inside the ground, the patch
of dirt is watered until a pumpkin plant grows out of it.
Pumpkins with the value can be harvested from this plant,
and whenever a pumpkin is harvested, a new pumpkin
grows back. This represents that variables appearing in
expressions are replaced with copies of their value. The
variables themselves, the wooden signs, once planted, are
never manipulated. Only their values can be changed or
copied.

5.1.1 Print Window

The third main element is the print window. The print
window is modeled after its equivalent on the Hedy web-
site, and similarly appears on the right hand side. A pipe
is attached to the back of the window, and the opening
at the other side appears adjacent to the platform. Here,
values can be put into the pipe, causing the value to be
printed on the print window, accompanied by a puff of
smoke.

Figure 10: Pumpkin with value “hello” being planted at
dirt patch of “x” with a shovel

Figure 11: Watering after planting the pumpkin at the
dirt patch of “x”

Figure 12: Watering after planting the pumpkin at the
dirt patch of “x”

Figure 13: In “x = y”, the value of y is harvested to
replace the value of x

Figure 14: Situation after “x = y” has been completed

Figure 15: The print window appears on the right of the
platform

Figure 16: Hello being put into the print pipe

Figure 17: Print window shows “hello” after pumpkin
with hello on it is put into its pipe

5.1.2 Avatar

Finally, there is the avatar, a child-friendly little fox. This
avatar runs to wherever was clicked with the mouse on the
platform. Currently, this is its only functionality. Though
the avatar may currently imbue players with some sense
of agency, and hints at personification of the computer,
that it is not all-knowing but operated by a character, it
is otherwise not utilised. In future iterations of the tool,
the avatar may facilitate additional modes of interaction
and goals for the player. For example, the player can be
required to harvest pumpkins themselves, and bring them
to right destination via the avatar, who laboriously hauls
the pumpkin.

5.2 How it works

The goal of the player is to click on the right position
on the screen, which changes each time the player has
clicked on the location. Invisible objects are placed in
the scene, and only one is active at a time. The mouse
position to the active object is tracked; when the mouse is
close enough, the cursor changes to indicate that the right
position is found. These invisible objects are placed in the
scene over the appropriate objects that the player should
click on. For example, to advance the sliding window to
the next symbol, the player should click on the “play”
button in the upper left corner of the code window. When
the player clicks on the right object, that interaction is
deactivated, and an event is triggered to play the next
scene of animations. At the end of the scene, the next
interactable location is activated. These animations were
keyframed by hand, and implemented via Unity Timelines,
which directs a collection of animations to form a cutscene.
As a consequence, the tool only works for one instance
of example code. For the purposes of this study, this is
sufficient. However, in real-world use, the tool should be
modular so that it can accept any code, and scenes and
animations should be generated by functions.

Dividing up the visualisations in smaller scenes may
result in less cognitive load for the player, as the amount
of new information imparted in each scene is kept small.
In fact, the complete visualisation for the example pro-
gram consists of thirty-six separate scenes. Furthermore,
by giving the player a goal, i.e. find the next object of
interest to click on, they may become more engaged. As
a result, players may become more prone to discover and
challenge their misconceptions. Some mechanisms that
may such support this: at each point they may scrutinise
the animation to figure out what the next object of inter-
est is, taking in more information than simply glossing
over the animation; they may compare their expectation
for the next object of interest to the actual object of
interest; the animation clips may behave differently to
their expectations as they try to predict what happens.

Figure 19: Invisible interactable object that triggers click
event

When the program has been fully visualised, a victory
screen informs the player they have finished the game.

In order to support web browsers, which Hedy runs
on, the game was compiled with Unity’s WebGL imple-
mentation. Thus, the tool may be embedded in the Hedy
website. Support and performance for WebGL varies, but
most modern browsers should perform adequately.

6 Method

In order to examine the extent that the tool described
in Section 5 can resolve misconceptions, we have taken
the tool to a primary school in the Netherlands. Here,
we have tested students on their ability to determine the
output of Hedy level 2 programs before and after using
the tool. Finally, we asked them to fill out a questionnaire
about the tool.

10

7 Participants

The participants were 8 primary school students at a
public Dutch primary school near a major city in South-
Holland. The school has a digital curriculum, which in-
cludes computational thinking and IT-skills, and this
curriculum starts in the first grade. The 8 participants
had had classes with Hedy up to level 2, which were last
given at the end of 2021. The participants were equal
part female and male.

8 The course of the experiment

First we asked parents for informed consent with form,
that explained the nature of the study, and how the
data of participants would be handled. At the school
at the “groep 8” classroom, I introduced myself, gave
a short pitch about what the experiment would entail,
including they would get to play a game about Hedy.
It was stressed that it was voluntary, and that I would
ask for their permission formally later. It was possible
to conduct the experiment in a different, empty class
room, only the participants would be present. There were
8 participants. We invited 4 of them to the room first,
asking them to bring their school-provided laptops. When
they were finished, we invited the last 4.

I explained what they were expected to do. First, to
sign a form that explained some things about the study,
including how their data would be handled, if they agreed
to participate. Next, to answer some test questions that
tested their code comprehension of a couple of example
programs from Hedy level 2. They were told that their
answers were anonymous.

In the test, they were shown a Hedy program inside
the Hedy code editor. They were then asked to write
down what output they thought would be displayed in
the print window, after running the program in Hedy.
They were also asked to share why they thought the
program would produce that output. All this was asked
for three programs. In Figures 20, 21 and 22 the three
test questions are shown along with the correct answer.

The reason that this approach was chosen over a quali-
tative interview, was to ensure that the interviewer did
not bias the participants’ answers. Furthermore, this ap-
proach mirrors the programming activity inside Hedy
that is intended to be paired with the tool.

The children were then asked to play the tool in pairs.
The reason to pair them was to simplify the logistical
problem of having enough laptops with the tool avail-
able, and that pairs of children more readily share their
thoughts. These thoughts were valuable, as were how
they interacted with the tool. Therefore, the computer
screens were recorded for two of the pairs, and the audio

fruit is banaan
fruit is appel
print fruit

print fruit

appel
appel

Figure 20: First test question, correct answer below

voornaam is hedy
achternaam is code
voornaam is achternaam
achternaam is voornaam
print voornaam

print achternaam

code
code

Figure 21: Second test question, correct answer below

11

kleurl is rood
print kleurl
kleur2 is groen
print kleur2
kleurl is kleur2
print kleurl
print kleur2

rood

groen
groen
groen

Figure 22: Third and last test question, correct answer
below

of the play through was recorded for every pair for later
analysis.

The participants were encouraged to think out loud,
and to take turns in playing the tool. I briefly explained
the goal of the game: to find and click on the correct place
in the screen to advance the game, until the game was
complete. I left them to complete the game otherwise.

After completing the game, I asked them to retake the
test, and that it was possible that their answers may have
changed after playing the game. See the appendix for this
version of the document. The test was scored as follows:
each answer is awarded two points for a correct answer,
one point for a partially correct answer, and zero points
for an incorrect answer. With three questions, there was
a maximum of six points. Blank space accompanied each
test question for participants to indicate their motivation
behind the answer. This is to gain insight into participants
thought process, and allows us to identify misconceptions
in their thinking.

Afterwards, we asked them to fill in a usability question-
naire. We stressed that this was anonymous. We opted
to not conduct interviews, because we had only potential
interviewer, who was creator of the tool, which could be
reason for the participants to answer in socially accept-
able way, obscuring the truth. In contrast, an anonymous
questionnaire on paper places distance between them and
the social context of the study. The participant could rate
each statement on the questionnaire with values ranging
from 5 (= completely agree) to 1 (= neutral). Every

statement was phrased positively, so that higher aver-
age of ratings indicated an overall more positive opinion.
Though questions mostly pertained to the tool, some
statements were about Hedy, so that we may compare the
two. There was also the opportunity to fill in open feed-
back, so that participants could share valuable feedback
we could not account for.

Finally, the questionnaires and the answers to the tests
were associated via numbers. Each participant received

a set of three documents that had the same number.

This way, participants remain anonymous but answers
across the documents by the same participant can still
be retrieved. This is useful for comparing answers before
and after the tool per participant.

12

Table 1: Participant’s answers in the questionnaire

Participants’ ratings —> 2 4) 7 Average rating per question
Questions (below)

Part 1

I think that the game is a fun 5 4 9 4 4
way to learn to understand code.

I think that the Hedy-website is a fun 4 3 3 4 3.625
way to learn to understand code.

I feel at ease when I'm learning to

understand code with the game. g 4 4 4 4125
I feel at ease when I'm learning to

understand code with the Hedy-website. 4 3 4 4 3.875
I would like to play the game again.) 2 4 2 3.75
I would like to use the game to continue

to learn to understand code better. 3 25 1 3 3.3125
I think that the game can help me (better) 4 9 4 3 375
understand how Hedy-code works. ’

I think that. the game is a useful way to 5 3 4 4 4125
become excited to learn to better understand code.

I would recommend the game to someone

I know (friends, siblings) 5 3 35 1 34375
Part 2

I think that the game is easy to use. 5 3 4 4 4.25
1 thlnk.lt s easy to learn to understand 5 3 1 3 3625
code with the game.

I kgew what I was supposed to do 5 3 4 3 3375
during the game.

I think that the game clarified the code. 5 3 2 3 3.75
I am sure that I can learn to understand

code with the game on my own, 4 1 1 2 2.75
even without assistance.

I am sure that I can learn how 3 3 3 3 3
Hedy-code works with the Hedy-website.

Part 3

I want the game to be added

to the Hedy-website. g 4 4 3 4.25
I would use Hedy more often,

if the game was added to to the website. g 3 4 2 3.625
I think that there is enough explanation

about code on the Hedy-website. 3 3 3 3 3.375
I want to be able to play the game 4 3 4 4 3625

with my own code.

13

I think that I would better understand

Hedy code, if someone explained it to me. 3235 g 3.5 5 3875

I think that I would better understand

Hedy code, if someone explained it 3 5 5 4 1 3 4 5 3.7
to me by showing the game.
I found the game to be interesting. 4 5 5 4 4 5 3 4 425

14

‘ure)s 9} Ud0IS

uee)s 9y

0 0 o poox OPOY APSH amy ep Jeess 1o [£ydua] [£ydua] [&ydwa] 8
oy I ymig
oy 19 .
9p0od Apal
uee)s o)
0 0 [8oar] 9pod Apoy MIJ oy 15 [£&rdwus] [£rdwus] [£1dwma] .
oy Iy
u2013 u2013
¢ z w0013 k.mvo: ueRUR(Q w0013 op0OAPOY yny 9
2013 apoo ueeueq 19013 my
pooi pooi
w0013
2013 apoo edde 19013 apod ueeuRq
i 0 5018 . 0018 , g
19013 opod ueeuRq 19013 Apay [odde
poo1
0013 edde
poo1 opod ueeuRq . 1edde
0 0 u9013 Apaq Todde [oa1] [ymo passowo] urRURq 14
poou ueeue(
u0013 pdde w0013
u9013 Apoaq ueRUR(w2013 Apayq 1edde
14 14 w013 o 3 . €
13 poo edde 0013 o9pod ueeuRq
poo1 ueeueq pooi
0013 poox o ToS01 o¥T0
0018 Apoy 0018 Apoy [o901 O3
4 0 o [809] do ueeueq jo 4
u2013 apod 10013 apod
odde juioy 10
poox poox
poou
poox Apay Todde w2013 apoo 1edde
i 0 - ‘D < D T
U013 Apa edde poox Apoy ueeuRq
pooi
(1093e) 0100g (910J0q) 2100G (T9gye) ¢ uwomsony) (1ye) g wonseny) (19gJe) T uonseny) (dI0Joq) ¢ womseny) (e10joq) g uonsen) (dI0joq) T womseny) juedoIIR]

suorjsonb 3893 03 sromsue sjuedoiyreJ :g o[qel,

15

9 Results

In this section, we present the data that was collected
during the experiment. The data is then further examined
and summarised. Table 2 shows the answers given by
participants before and after having used the tool, as well
as their score. The results of the questionnaire are shown
in table 1.

9.1 Test Scores

A preliminary look at the test scores before and after
having played the tool once, shows that four of the eight
participants improved their score. These are participants
1 and 2, and 5 and 6. It’s worth noting that these par-
ticipants were paired: 1 and 2 played the tool together,
taking turns, as did 5 and 6. Participant 1 and 5 showed
the most improvement: both increased their score from 0
to 4, while participant 6 improved their score by only 1
point, from 2 to 3. The other four did not improve their
scores. In fact, they all maintained a score of 0, except
for participant 3, who maintained their initial score of 2.

9.2 Questions

When looking at the questions, we discover that perfor-
mance was not equal on every tested program. For the
last question, two of the eight participants already scored
full points before the playing the tool. After playing the
tool, these participants did not change their correct an-
swer, 2 other participants also got full points for that
question, and 1 participant got it partially correct. That
means most participants answered this question correctly.
Perhaps this should not come as a surprise: the structure
of the program in the last question is very similar to the
visualised program.

While the scores are a convenient shorthand, they don’t
tell the full story. For example, participant did not im-
prove in their score, and did not fill in anything for the
last question in the first round. After having played the
tool, however, they filled in an answer that was very close
to the correct answer, missing out on partial credit by a
narrow margin.

Furthermore, not all questions seem equally difficult.
While 2 participant got the last questions right before
the tool, no one got the first two questions right initially.
After the tool, only 1 participant got full credit for the
first question, and 1 other got partial credit. Similarly for
question 2, only participant 5 got that question completely
right, and participant 1 got partial credit.

The inequality of questions should be kept in mind
when comparing test scores, as the scores do not tell
how participants answered, and does not account for the
higher difficulty of the first two questions over the last
question.

9.3 Misconceptions

We have looked at the improvement of overall scores of
participants, and compared the questions and the per-
formance differences on these questions. Finally, we will
scrutinise the contents of the student’s answers for mis-
conceptions.

9.3.1 Test Question 1

A recurring misconception in the first question, shown in
Figure 20, is that variables can hold multiple values. This
is made evident in the answers of participants 1, 2, 3 and
5. Before the tool, each participant answered that the con-
secutive print statements would print something different,
even though the same variable is printed. Furthermore,
each participant motivated their answer by pointing out
that the variable was both the value in the first assign-
ment and the value in the second assignment. Uniquely,
participant 2 thought that there was a 50 percent chance
that each print statement would either print “banaan” or
“appel”, enumerating the four possible combinations of
output.

Another misconception for this question was possibly
held by participant 6. They answered “fruit, fruit”, stat-
ing that fruit is what is printed. It’s possible that they
believed that variables are not replaced with their value,
because print interpreted “fruit” not as the variable, but
as the word to print. This misconception is expected, as
quotation marks to differentiate between these cases are
not introduced until later levels.

Participant 1 seems to have abandoned this misconcep-
tions after playing the tool, giving the correct answer and
stating that fruit is “banaan” at first, but then turns into
“appel?7 .

9.3.2 Test Question 2

A common misconception for the second question, shown
in Figure 21 was that the third and fourth statements,
switched the values of the variables around. It may be
the case that the naming of the variables induced this
misconception. “Voornaam”, meaning first name, and
“achternaam”, meaning surname implies direction in these
variables, and the participants may have had the expecta-
tion that the program ought to switch these names around.
The alternative, being that the names are not switched
around, would mean that the program is rather pointless,
which may be cause to abandon that idea. Furthermore,
since each variable name implies what should be stored
in it, this may also induce the misconception that natural
language meanings of variable names has an effect on
the program. By naming the variables first name and
surname, this implies that their values are a first name
and a surname, and people do not often have the same

16

first name as surname. Therefore, to the participants it
may have seemed unlikely that the variables would end
up holding the same value.

Participant 1 and 5 seem to have resolved this miscon-
ception after playing the tool, motivating their answer
by stating that “voornaam” became “achternaam”. Par-
tipant 1 did however answer “hedy hedy”, getting the
order wrong.

9.3.3 Test Question 3

As for the last question, shown in Figure 22, most partici-
pants had little to say about their answers before the tool,
so no misconceptions could be identified with any cer-
tainty. However, more participants were able to motivate
their answer after playing the tool. Again, participants
struggled to motivate their answers, but those who got it
right, could explain that while the variables first differed
in value, one was later assigned the value of the other.

9.4 Comparing Hedy and the tool

Some analysis of the questionnaire data yields some in-
teresting results. First, the average rating for positive
statements about the tool was 3.75, yet the average for
Hedy was 3.46. While interesting, these numbers should
not be compared: there were more statements about the
tool than about Hedy, and there was an additional state-
ment for Hedy that was not applicable to the tool.

However, when computing the average of only the com-
parative statements, i.e. statements that asserted the
same about either Hedy or the tool, we find an average
assessment of 3.625 for the tool, and 3.5 for Hedy.

The average rating of every statement was 3.7, pro-
viding a baseline to compare deviations with. The only
statement uniquely about Hedy, “I think that there is
enough explanation about code on the Hedy-website”,
deviated a bit from the overall average with an average
rating of 3.375.

9.5 Categories

When looking at commonalities between individual par-
ticipants, we find 4 categories. The first are those who
showed no improvement in the test, but rated the tool
highly nonetheless. Participant 3, for example, evaluated
the game overall with 4.58, much higher than the aver-
age, even though they did not improve in the test. They
indicated that they thought understood the code better
because of the game, though misconceptions remained
present in their test motivation, e.g. the misconception
that variables can hold multiple values.

The second category are those who showed improve-
ment in the test, and rated the tool highly as well. For
example, participant 1 did resolve the misconception that

variables can hold multiple values, as indicated in their
test answers and provided motivation. In fact, they went
from 0 out of 6 points to 4 out of 6. They rated the game
on average with a 4. Participant 2 went from test score
0 to 2, and rated the tool on average with a 4.71 (their
average rating of Hedy was 3.5).

The third category are those who similarly showed
improvement in the test, yet rated the tool not as highly
as the second category. Participant 5 in particular rated
the game on average with a 3.03, and rated the game 2.33
when compared to Hedy, which they rated with 3.33. This
was the lowest rating of the tool of all participants in the
comparative questions. Surprisingly, this participant went
from a 0 in the test to a 4, and they were the only one
to get the second test question right, after having played
the game.

The final category did not improve in the test, and
rated the game similarly to category three. Though par-
ticipants 7 and 8 did not fill in any test question before
the game but did after, whether this can be attributed
to social pressure to answer or raised confidence in their
understanding remains unclear. Together with category
three, they indicated that they would have liked more ex-
planation accompanied with the game, and were initially
confused by it.

9.6 Highest and lowest rated statements

Some statements that were rated higher than average,
were “I think that the game is easy to use”, with an
average rating of 4.25, as were “I want the game to be
added to the Hedy website” and “I found the game to
be interesting”. “I feel at ease when I'm learning to un-
derstand code with the game” (Hedy’s counterpart was
rated 3.88) and “I think that the game is a useful way to
become excited to learn to better understand code” were
both rated with a 4.13. Finally, “I think that the game is
a fun way to learn to understand code” was rated with a
4. This was a higher rating than Hedy’s counterpart of
this statement, which was rated with a 3.63.

The three lowest average ratings for the tool were 2.75,
3.31 and 3.38, for the following questions respectively: “I
am sure that I can learn to understand code with the game
on my own”, “I would like to use the game to continue
to learn to understand code better”, and “I knew what I
was supposed to do during the game”.

10 Discussion

In order to learn to program more meaningfully, students
must grow their programming knowledge beyond the syn-
tactical. However, misconceptions that may be present
students, can significantly impair their conceptual under-
standing of code. Simply writing more code may not be

17

sufficient to resolve such misconceptions. Instead, special
learning experiences may be needed [source]. Yet, at the
time of writing, Hedy does not currently offer special fa-
cilities for students to resolve misconceptions about Hedy
code. Program visualisations may be an effective tool to
resolve such misconceptions in children. Yet, no such tool
yet exists for Hedy-code.

It was the aim of the current study to investigate
whether an interactive program visualisation tool for Hedy
example code is an effective approach for resolving mis-
conceptions in young Hedy users. Restricting our scope to
the initial two levels of Hedy, the study sought to answer
the question: “To what extent can an interactive program
visualisation tool help to resolve multiple variable assign-
ment misconceptions in young users of Hedy for level 2
example code?”

Our investigation led to the creation of a tool of a game
and program visualisation tool for Level 2 Hedy code.
Eight children from a Dutch primary school participated
in the study. They had some experience with Hedy Level 1
and 2, and were asked to play the tool. Additionally, each
was tested on their conceptual understanding of Level 2
Hedy programs with multiple variable assignments, before
and after playing the tool exactly once.

10.1 Improved Test Scores

The results of the tests indicate that every student started
out with misconceptions. Yet four of the eight participants
improved in the test. As students were given minimal
guidance, and only played the tool once, this provides
evidence that the tool helped these four students to re-
solve misconceptions they had about multiple variable
assignments.

10.2 Effects of type of misconceptions on
scores

Even though this group showed improved scores, no one
attained a perfect score. This may mean that the tool is
better at resolving some misconceptions than other, as
each test question differs. Notably, the first and second
test question were each only answered correctly once af-
ter the tool. This may be due to the natural language
misconception [quote the misconceptions outlined paper],
that the natural language meaning of names of variables
influence their values. In the example code that was vi-
sualised in the tool, variable names were “x” and “y”.
Since such names carry no natural language meaning, the
misconception may not be challenged, as it does not in-
terfere the student’s understanding of the example. Thus,
this understanding is never contradicted, and the user is
not given the opportunity to discover and reject it. This
indicates that the tool, in its current state, may only

help resolve a limited set of multiple variable assignment
misconceptions, namely those that the tool’s example
challenges. However, this does not indicate that the ap-
proach is limited, as it is easy to modify such a tool to
include examples that do challenge specific misconcep-
tions. Moreover, participants performed best on the last
question, which was most similar to the example in the
tool. This both corroborates the finding that the tool
resolves some misconceptions better than others, and also
hints that students may not transfer their insights gained
from the tool as readily to dissimilar code. This cannot
be so easily remedied, though it is plausible that playing
the game with different examples improves transfer.

Our tool shows promise for such tools to resolve miscon-
ceptions in young Hedy students , as it has shown to help
in resolving multiple variable misconceptions for four of
our eight participants. At the same time, the tool did not
manage to resolve every misconception that students had,
specifically those that did not appear in the visualised
program. While this may limit the extent to which our
current tool can help in resolving misconceptions, as this
issue may be more or less easily remedied, care should be
taken to write off the overall the approach of interactive
program visualisation for Hedy.

10.3 Mismatch Between Score and Atti-
tude

Not all participants who improved, felt that the tool
helped them. This is likely due to a lack of feedback.
Participants were never told when they got the answer
right. However, this also reinforces the need to present
learning experiences appropriately. Students may miss out
on valuable learning experiences, because they perceive
them negatively. Our tool was perceived as engaging
and fun, but to a lesser extent educational. Therefore, it
is important to provide students with feedback to their
answers when the tool is integrated in Hedy (accompanied
by output prediction exercises similar to those used in the
study). (integration not yet explained in design section,
should it be? If not, remove reference to Hedy integration)
[Reference to useful activities that are not perceived as
fun or worthwhile]

10.4 Possible Causes of Lack of Improve-
ment

While four students did improve, four students did not
improve their performance on the test. One possible ex-
planation is this is due to the design of the experiment,
e.g. participants having only allocated little time with the
tool, or due to lack of guidance during the experiment.
With real world use, it is possible that that the tool proves
a greater aide than what the experiment has been able

18

to show.

A second explanation is that the tool may be underde-
veloped. In this case, it is expected that adding additional
features, such as the ability to visualise one’s own code,
sound effects and multiple code examples, will improve
the tool’s utility in resolving misconceptions. Keeping
this explanation in mind, the results may indicate only
a lower-bound for the extent to which such a tool can
resolve misconceptions in young student.

Alternatively, it may be the case that the approach of
interactive program visualisation is not equally fruitful
for every type of student. This may put an upper-bound
to the extent that the tool can resolve misconceptions.
While some students may find that the tool helps them
resolve misconceptions, even when it is underdeveloped,
others may find little help in the tool, no matter how
refined the tool. In our results we have seen a category
of participant who did not rate the tool highly, who also
did not improve in the test. It is this category that we
suspect may least benefit from our approach.

10.5 Extent of Resolving Misconceptions

In short, the tool brings to light a potent approach to
resolving multiple variable assignment misconceptions.
Our tool worked better for some students than others,
and may help to resolve some misconceptions better than
others. What this means for the limit to the extent that
such a tool can help resolve misconceptions, depends on
the explanation for why our tool performed variably. It
may be the case that the tool was underdeveloped, or
that it would perform better in a real-world scenario. In
this case, we can only establish a lower-bound for this
extent, namely the extent we have found for our tool.
Alternatively, the tool may not suit some students, in
which case the extent to which such tools may resolve
misconceptions depends on the student. In failing to help
resolve misconceptions for some participants, we may
have found an upper-bound on the extent to which such
a tool may help resolve misconceptions for a group of
students.

10.6 Reception

The tool also serves as a proof-of-concept. It shows that
a fun, engaging and colourful program visualisation, that
utilises various design principles, such as from game de-
sign, can be an effective tool to resolve misconceptions.
However effective such a tool may be, it would still be
rendered useless if students did not like it and would not
use it. Our participants, however, were enthusiastic about
the tool, thought it was fun and interesting, yet helpful,
and indicated that they would like to see it in Hedy. At
the same time, they expressed to a lesser degree that they

19

thought Hedy was sufficient in helping them understand
code, and were more hesitant to agree that enough expla-
nation was available on Hedy. Thus, we showed that not
only the tool may be effective in resolving misconceptions,
but also that Hedy students may be happy to use it to
resolve misconceptions, and welcome it to Hedy.

10.7 Future Work

As it stands, Hedy does not currently have a program
visualisation tool embedded in the website. This study
showed that an interactive program visualisation tool can
be effective in helping resolve misconceptions. Further-
more, Hedy students may welcome it as an addition to
the Hedy website. Therefore, we recommend that it be
added to Hedy. However, the current tool only works for
one example. Before Hedy and its students can take full
advantage of the tool, it first needs to be made to work for
arbitrary Hedy code. In order for this to work, animations
must be generated with algorithms, instead of keyframed
by hand. A parser should analyze Hedy programs and add
the appropriate animations to the queue, and populate
the 3D scene with the right objects.

Making the tool work for arbitrary examples presents
a number of other challenges. First, Hedy code with bugs
lead to various exceptions, and one would expect that
a visualiser would handle these appropriately. However,
this greatly adds to the technical challenge, as new anima-
tions and behaviour need to be programmed to visualise
programming errors. Another challenge is the changing na-
ture of Hedy. Other, similar gradual learning approaches,
only add new functionality at each step. Hedy, in contrast,
also changes the syntax. If the visualiser is to work for
many or all Hedy’s levels, the changing syntax should
be accounted for. Finally, making the visualiser work for
arbitrary Hedy code, opens up many possibilities for bugs
to occur. This necessitates more rigorous debugging than
was needed for the tool, for which only a single scenario
needed to be debugged.

A second recommendation is to investigate how the
limitations seen in the study can be overcome. Students
who benefited from the tool, did not necessarily perceive
it as useful. For instance, we recommend that Hedy inte-
grates the visualiser with program tracing activities on
the website, similar to the test questions in the study.
It is paramount to allow students to become aware of
their development, as this is a source of motivation, and
increases the likelihood that they continue to use the
tool. Moreover, students who were confused by the tool
expressed a wish for more explanation. Another way to
integrate the visualiser with Hedy, is to pair it with ex-
planation of how to use it, and information about the
concepts it tries to clarify, like Gidget’s dictionary.

10.8 Limitations

The first limitation of the study is that no control group
was present in the experiment. A control group that
completed the same test without playing the tool could
have shown similar improvements to our participants.
Perhaps because the time between the tests was sufficient
for participants to recollect their knowledge, or because
attempting the test questions was sufficiently informative
on its own.

Second, the number of students who participated in the
study was quite small, and were from the same class and
school. This makes it difficult to generalise our results to
Hedy students at large.

There was also no longitudinal data, so it’s difficult to
say whether our participants’ engagement with the tool
would have diminished over time.

Lastly, we made certain trade-offs. No qualitative in-
terviews were conducted in favour of an anonymous test
and questionnaire. This may have prevented bias, and
allowed us to ask more questions in the time frame we
were allocated, as we had only one interviewer, while our
participants could fill in the tests and questionnaire in par-
allel. Still, as a consequence of this trade-off, we have less
in-depth data on the specific contents of our participant’s
opinions and thought processes. The second trade-off was
that of presenting the same test questions on the first and
the second test. While we can with greater certainty say
that variation in answers were due to playing the tool, it
may have made it more likely that participants simply
repeated their old answers, and remembered their miscon-
ception over the new insights they may have gained. This
means that we may have seen more improvements if the
questions differed between the two tests, at the expense
of certainty of its cause.

10.9 Implications

The current study presented an interactive program visu-
alisation tool for level two Hedy code. The results indicate
that this tool can help resolve multiple variable assign-
ment misconceptions for young Hedy students. Further-
more, we have found that such a tool may be a welcome
addition to Hedy. Therefore, this study supports the fur-
ther development of the tool and its use in Hedy.
Misconceptions are an important challenge for students
to address. They may be present as early as level two,
as we have seen in our participants. These misconcep-
tions can remain undetected and are hard to change, and
limit the student’s ability to reason about and write pro-
grams. In short, they they are an obstacle for learning to
program. If they are not addressed, they may continue
to hamper Hedy’s effectiveness as a learning system. As
Hedy is growing more popular, so does its impact. A

failure to address misconceptions may lead to more and
more students holding misconceptions.

Our tool represents a significant step in addressing
misconceptions for Hedy. However, much remains to be
done. Program visualisation may not be equally effective
at resolving misconceptions for every student, and there
is still the issue of identifying misconceptions. This last
issue is especially important, because misconceptions may
be more widespread than realised. Furthermore, program-
ming requires different kinds of knowledge. For Hedy to
become a more complete learning system, it must consider
not only how to address misconceptions, but also how to
impart conceptual and strategic knowledge.

Programming is becoming increasingly important. At
no point in history has computing technology had such a
profound impact as it has today. Our youngest generation
will not remember a time before ever present smartphones,
as powerful as supercomputers from only decades ago.
The internet, a global network of near instant information
exchange that was once the stuff of science-fiction, is
now ingrained in our culture, especially young culture.
While this brings exciting opportunities, it is an increasing
concern that computing technology is controlling our
lives, especially our youngest. It is paramount to provide
our children with programming education that empowers
them to take control over computing technology, as it
will one day fall to them to shape the future. Hedy is
at the frontier of programming education, in position to
prepare young people for a future of programming, so we
should strive to improve it. It is the author’s hope that
the current study contributes to a better Hedy.

References

[1] Felienne Hermans. Hedy: a gradual language for pro-
gramming education. In Proceedings of the 2020 ACM
conference on international computing education re-
search, pages 259-270, 2020.

[2] Jeisson Hidalgo-Céspedes, Gabriela Marin-Raventés,
and Vladimir Lara-Villagran. Learning principles in
program visualizations: a systematic literature review.
In 2016 IEEE frontiers in education conference (FIE),
pages 1-9. IEEE, 2016.

[3] Benjamin Mako Hill and Andrés Monroy-Herndndez.
A longitudinal dataset of five years of public activity in
the scratch online community. Scientific data, 4(1):1-
14, 2017.

[4] Yu-Chang Hsu, Natalie Roote Irie, and Yu-Hui Ching,.
Computational thinking educational policy initiatives
(ctepi) across the globe. TechTrends, 63(3):260-270,
2019.

20

[5]

Yizhou Qian and James Lehman. Students’ miscon-
ceptions and other difficulties in introductory pro-

gramming: A literature review. ACM Transactions
on Computing Education (TOCE), 18(1):1-24, 2017.

José-Manuel Saez-Lépez, Marcos Roman-Gonzéalez,
and Esteban Vazquez-Cano. Visual programming lan-
guages integrated across the curriculum in elementary
school: A two year case study using “scratch” in five
schools. Computers & Education, 97:129-141, 2016.

Amal A Shargabi, Syed Ahmad Aljunid,
Muthukkaruppan Annamalai, and Abdullah Mohd
Zin. Performing tasks can improve program com-
prehension mental model of novice developers: An
empirical approach. In Proceedings of the 28th
International Conference on Program Comprehension,
pages 263273, 2020.

Juha Sorva, Ville Karavirta, and Lauri Malmi. A
review of generic program visualization systems for
introductory programming education. ACM Transac-
tions on Computing Education (TOCE), 13(4):1-64,
2013.

Kaitlin Woolley and Ayelet Fishbach. It’s about time:
Earlier rewards increase intrinsic motivation. Journal
of personality and social psychology, 114(6):877, 2018.

21

